--- language: en license: mit library_name: mlx pipeline_tag: text-generation tags: - transformers - mlx base_model: - MiniMaxAI/MiniMax-M2 --- # mlx-community/MiniMax-M2-mlx-8bit-gs32 This model [mlx-community/MiniMax-M2-mlx-8bit-gs32](https://huggingface.co/mlx-community/MiniMax-M2-mlx-8bit-gs32) was converted to MLX format from [MiniMaxAI/MiniMax-M2](https://huggingface.co/MiniMaxAI/MiniMax-M2) using mlx-lm version **0.28.1**. ## Recipe: * 8-bit * group-size 32 * 9 bits per weight (bpw) You can find more similar MLX model quants for a single Apple Mac Studio M3 Ultra with 512 GB at https://huggingface.co/bibproj --- ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/MiniMax-M2-mlx-8bit-gs32") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```