--- language: en license: mit tags: - tensorflow - image-classification - mnist - digits datasets: - mnist metrics: - accuracy --- # Digit Recognition Model This model is trained to recognize handwritten digits from the MNIST dataset. ## Model Description - **Model Type:** CNN with Attention - **Task:** Image Classification - **Input:** 28x28 grayscale images - **Output:** Digit classification (0-9) ## Training The model was trained on the MNIST dataset using a CNN architecture with attention mechanisms. ## Usage ```python import tensorflow as tf import numpy as np # Load the model model = tf.saved_model.load("path_to_saved_model") # Prepare input image = tf.keras.preprocessing.image.load_img("digit.png", target_size=(28, 28)) image = tf.keras.preprocessing.image.img_to_array(image) image = image.astype('float32') / 255.0 image = np.expand_dims(image, axis=0) # Make prediction predictions = model(image) predicted_digit = tf.argmax(predictions, axis=1).numpy()[0] ```