BoLiu commited on
Commit
b2e524b
·
verified ·
1 Parent(s): 077e78e

rename to nemotron

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -14,24 +14,24 @@ tags:
14
  - ingestion
15
  - yolox
16
  ---
17
- # Nemoretriever Graphic Element v1
18
 
19
  ## **Model Overview**
20
 
21
  ![viz.png](viz.png)
22
  *Preview of the model output on the example image.*
23
 
24
- The input of this model is expected to be a chart image. You can use the [Nemoretriever Page Element v3](https://huggingface.co/nvidia/nemoretriever-page-elements-v3) to detect and crop such images.
25
 
26
  ### **Description**
27
 
28
- The **NeMo Retriever Graphic Elements v1** model is a specialized object detection system designed to identify and extract key elements from charts and graphs. Based on YOLOX, an anchor-free version of YOLO (You Only Look Once), this model combines a simpler architecture with enhanced performance. While the underlying technology builds upon work from [Megvii Technology](https://github.com/Megvii-BaseDetection/YOLOX), we developed our own base model through complete retraining rather than using pre-trained weights.
29
 
30
  The model excels at detecting and localizing various graphic elements within chart images, including titles, axis labels, legends, and data point annotations. This capability makes it particularly valuable for document understanding tasks and automated data extraction from visual content.
31
 
32
  This model is ready for commercial/non-commercial use.
33
 
34
- We are excited to announce the open sourcing of this commercial model. For users interested in deploying this model in production environments, it is also available via the model API in NVIDIA Inference Microservices (NIM) at [nemoretriever-graphic-elements-v1](https://build.nvidia.com/nvidia/nemoretriever-graphic-elements-v1).
35
 
36
  ### License/Terms of use
37
 
@@ -52,7 +52,7 @@ Global
52
 
53
  ### Use Case
54
 
55
- The **NeMo Retriever Graphic Elements v1** is designed for automating extraction of graphic elements of charts in enterprise documents. Key applications include:
56
  - Enterprise document extraction, embedding and indexing
57
  - Augmenting Retrieval Augmented Generation (RAG) workflows with multimodal retrieval
58
  - Data extraction from legacy documents and reports
@@ -60,7 +60,7 @@ The **NeMo Retriever Graphic Elements v1** is designed for automating extraction
60
 
61
  ### Release Date
62
 
63
- 10/23/2025 via https://huggingface.co/nvidia/nemoretriever-graphic-elements-v1
64
 
65
  ### References
66
 
@@ -128,11 +128,11 @@ git lfs install
128
  ```
129
  - Using https
130
  ```
131
- git clone https://huggingface.co/nvidia/nemoretriever-graphic-elements-v1
132
  ```
133
  - Or using ssh
134
  ```
135
- git clone [email protected]:nvidia/nemoretriever-graphic-elements-v1
136
  ```
137
 
138
  2. Run the model using the following code:
@@ -184,7 +184,7 @@ We provide examples in the notebook `Demo.ipynb`.
184
  ### Software Integration
185
 
186
  **Runtime Engine(s):**
187
- - **NeMo Retriever Page Elements v3** NIM
188
 
189
 
190
  **Supported Hardware Microarchitecture Compatibility [List in Alphabetic Order]:**
@@ -201,7 +201,7 @@ This AI model can be embedded as an Application Programming Interface (API) call
201
 
202
  ## Model Version(s):
203
 
204
- * `nemoretriever-graphic-elements-v1`
205
 
206
  ## Training and Evaluation Datasets:
207
 
 
14
  - ingestion
15
  - yolox
16
  ---
17
+ # Nemotron Graphic Element v1
18
 
19
  ## **Model Overview**
20
 
21
  ![viz.png](viz.png)
22
  *Preview of the model output on the example image.*
23
 
24
+ The input of this model is expected to be a chart image. You can use the [Nemotron Page Element v3](https://huggingface.co/nvidia/nemotron-page-elements-v3) to detect and crop such images.
25
 
26
  ### **Description**
27
 
28
+ The **Nemotron Graphic Elements v1** model is a specialized object detection system designed to identify and extract key elements from charts and graphs. Based on YOLOX, an anchor-free version of YOLO (You Only Look Once), this model combines a simpler architecture with enhanced performance. While the underlying technology builds upon work from [Megvii Technology](https://github.com/Megvii-BaseDetection/YOLOX), we developed our own base model through complete retraining rather than using pre-trained weights.
29
 
30
  The model excels at detecting and localizing various graphic elements within chart images, including titles, axis labels, legends, and data point annotations. This capability makes it particularly valuable for document understanding tasks and automated data extraction from visual content.
31
 
32
  This model is ready for commercial/non-commercial use.
33
 
34
+ We are excited to announce the open sourcing of this commercial model. For users interested in deploying this model in production environments, it is also available via the model API in NVIDIA Inference Microservices (NIM) at [nemotron-graphic-elements-v1](https://build.nvidia.com/nvidia/nemotron-graphic-elements-v1).
35
 
36
  ### License/Terms of use
37
 
 
52
 
53
  ### Use Case
54
 
55
+ The **Nemotron Graphic Elements v1** is designed for automating extraction of graphic elements of charts in enterprise documents. Key applications include:
56
  - Enterprise document extraction, embedding and indexing
57
  - Augmenting Retrieval Augmented Generation (RAG) workflows with multimodal retrieval
58
  - Data extraction from legacy documents and reports
 
60
 
61
  ### Release Date
62
 
63
+ 10/23/2025 via https://huggingface.co/nvidia/nemotron-graphic-elements-v1
64
 
65
  ### References
66
 
 
128
  ```
129
  - Using https
130
  ```
131
+ git clone https://huggingface.co/nvidia/nemotron-graphic-elements-v1
132
  ```
133
  - Or using ssh
134
  ```
135
+ git clone [email protected]:nvidia/nemotron-graphic-elements-v1
136
  ```
137
 
138
  2. Run the model using the following code:
 
184
  ### Software Integration
185
 
186
  **Runtime Engine(s):**
187
+ - **Nemotron Page Elements v3** NIM
188
 
189
 
190
  **Supported Hardware Microarchitecture Compatibility [List in Alphabetic Order]:**
 
201
 
202
  ## Model Version(s):
203
 
204
+ * `nemotron-graphic-elements-v1`
205
 
206
  ## Training and Evaluation Datasets:
207