prithivMLmods commited on
Commit
2bbd70a
·
verified ·
1 Parent(s): 50f30b0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -1
README.md CHANGED
@@ -13,4 +13,69 @@ tags:
13
  - cot
14
  ---
15
 
16
- ![elita.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/8mCn4K1YcCp_f1nyvwGjJ.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - cot
14
  ---
15
 
16
+ ![elita.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/8mCn4K1YcCp_f1nyvwGjJ.png)
17
+ # **Elita-1**
18
+
19
+ Elita-1 is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. It has been fine-tuned on a synthetic dataset based on open-thoughts & general corpus reasoning entries, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
20
+
21
+ ### **Key Improvements**
22
+ 1. **Enhanced Knowledge and Expertise**: Improved mathematical reasoning, coding proficiency, and structured data processing.
23
+ 2. **Fine-Tuned Instruction Following**: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).
24
+ 3. **Greater Adaptability**: Better role-playing capabilities and resilience to diverse system prompts.
25
+ 4. **Long-Context Support**: Handles up to **128K tokens** and generates up to **8K tokens** per output.
26
+ 5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
27
+
28
+ ### **Quickstart with Transformers**
29
+
30
+ ```python
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+
33
+ model_name = "prithivMLmods/Elita-1"
34
+
35
+ model = AutoModelForCausalLM.from_pretrained(
36
+ model_name,
37
+ torch_dtype="auto",
38
+ device_map="auto",
39
+ trust_remote_code=True
40
+ )
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
42
+
43
+ prompt = "Give me a short introduction to large language models."
44
+ messages = [
45
+ {"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
46
+ {"role": "user", "content": prompt}
47
+ ]
48
+ text = tokenizer.apply_chat_template(
49
+ messages,
50
+ tokenize=False,
51
+ add_generation_prompt=True
52
+ )
53
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
54
+
55
+ generated_ids = model.generate(
56
+ **model_inputs,
57
+ max_new_tokens=512
58
+ )
59
+ generated_ids = [
60
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
61
+ ]
62
+
63
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
64
+ print(response)
65
+ ```
66
+
67
+ ### **Intended Use**
68
+ - **Advanced Reasoning & Context Understanding**: Designed for logical deduction, multi-step problem-solving, and complex knowledge-based tasks.
69
+ - **Mathematical & Scientific Problem-Solving**: Enhanced capabilities for calculations, theorem proving, and scientific queries.
70
+ - **Code Generation & Debugging**: Generates and optimizes code across multiple programming languages.
71
+ - **Structured Data Analysis**: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.
72
+ - **Multilingual Applications**: High proficiency in over 29 languages, enabling global-scale applications.
73
+ - **Extended Content Generation**: Supports detailed document writing, research reports, and instructional guides.
74
+
75
+ ### **Limitations**
76
+ 1. **High Computational Requirements**: Due to its **14B parameters** and **128K context support**, it requires powerful GPUs or TPUs for efficient inference.
77
+ 2. **Language-Specific Variability**: Performance may vary across supported languages, especially for low-resource languages.
78
+ 3. **Potential Error Accumulation**: Long-text generation can sometimes introduce inconsistencies over extended outputs.
79
+ 4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
80
+ 5. **Prompt Sensitivity**: Outputs can depend on the specificity and clarity of the input prompt.
81
+