--- license: cc-by-nc-4.0 language: - en base_model: - facebook/metaclip-2-worldwide-s16 pipeline_tag: image-classification library_name: transformers tags: - text-generation-inference - age-ange-estimator --- ![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3lZzKyjG6fz-ArZwSh__B.png) # **MetaCLIP-2-Age-Range-Estimator** > **MetaCLIP-2-Age-Range-Estimator** is an image classification vision-language encoder model fine-tuned from **[facebook/metaclip-2-worldwide-s16](https://huggingface.co/facebook/metaclip-2-worldwide-s16)** for a single-label classification task. > It is designed to predict the age range of a person from an image using the **MetaClip2ForImageClassification** architecture. >[!note] MetaCLIP 2: A Worldwide Scaling Recipe : https://huggingface.co/papers/2507.22062 ``` Classification Report: precision recall f1-score support Child 0-12 0.9763 0.9758 0.9761 2193 Teenager 13-20 0.9158 0.8437 0.8783 1779 Adult 21-44 0.9593 0.9779 0.9685 9999 Middle Age 45-64 0.9458 0.9450 0.9454 3785 Aged 65+ 0.9769 0.9381 0.9571 1260 accuracy 0.9559 19016 macro avg 0.9548 0.9361 0.9451 19016 weighted avg 0.9557 0.9559 0.9556 19016 ``` ![download](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Qm87Eex4rqSFoTw2H_Nog.png) --- The model categorizes images into five age ranges: * **Class 0:** "Child 0-12" * **Class 1:** "Teenager 13-20" * **Class 2:** "Adult 21-44" * **Class 3:** "Middle Age 45-64" * **Class 4:** "Aged 65+" --- # **Run with Transformers** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr import torch from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image # Model name from Hugging Face Hub model_name = "prithivMLmods/MetaCLIP-2-Age-Range-Estimator" # Load processor and model processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) model.eval() # Define labels LABELS = { 0: "Child (0–12)", 1: "Teenager (13–20)", 2: "Adult (21–44)", 3: "Middle Age (45–64)", 4: "Aged (65+)" } def age_classification(image): """Predict the age group of a person from an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() predictions = {LABELS[i]: round(probs[i], 3) for i in range(len(probs))} return predictions # Build Gradio interface iface = gr.Interface( fn=age_classification, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Label(label="Predicted Age Group Probabilities"), title="MetaCLIP-2 Age Range Estimator", description="Upload a face image to estimate the person's age group using MetaCLIP-2." ) # Launch app if __name__ == "__main__": iface.launch() ``` # **Sample Inference:** ![Screenshot 2025-11-13 at 01-14-28 MetaCLIP-2 Age Range Estimator](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/5SUHT4ZeKlWEM2smB1dd0.png) ![Screenshot 2025-11-13 at 01-15-41 MetaCLIP-2 Age Range Estimator](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/cQT5GtchFCDnlu79AG0BR.png) ![Screenshot 2025-11-13 at 01-17-31 MetaCLIP-2 Age Range Estimator](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qxoEmFliB1KCDjXhhW25H.png) ![Screenshot 2025-11-13 at 01-18-15 MetaCLIP-2 Age Range Estimator](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Xnsa49OVCqm600S2ifFFy.png) ![Screenshot 2025-11-13 at 01-18-52 MetaCLIP-2 Age Range Estimator](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/JHUnt0UP1uYKJdUpjJAGE.png) # **Intended Use:** The **MetaCLIP-2-Age-Range-Estimator** model is designed to classify images into five age categories. Potential use cases include: * **Demographic Analysis:** Supporting research and business insights into age distribution. * **Health and Fitness Applications:** Assisting in age-based health recommendations. * **Security and Access Control:** Enabling age verification systems. * **Retail and Marketing:** Enhancing personalization and customer profiling. * **Forensics and Surveillance:** Supporting age estimation in investigative and security contexts.