Update hongik/engine_ai.py
Browse files- hongik/engine_ai.py +3 -3
hongik/engine_ai.py
CHANGED
|
@@ -69,7 +69,7 @@ class HongikAIEngine(BaseEngine):
|
|
| 69 |
the neural network model and replay buffer, and preparing for training.
|
| 70 |
"""
|
| 71 |
super().__init__(katrain, config)
|
| 72 |
-
print("Initializing Hongik AI Integrated Engine..."
|
| 73 |
|
| 74 |
from appdirs import user_data_dir
|
| 75 |
APP_NAME = "HongikAI"
|
|
@@ -139,7 +139,7 @@ class HongikAIEngine(BaseEngine):
|
|
| 139 |
class MockProcess: poll = lambda self: None
|
| 140 |
self.katago_process = self.hongik_process = MockProcess()
|
| 141 |
self.sound_index = False
|
| 142 |
-
print("Hongik AI Engine ready!"
|
| 143 |
|
| 144 |
def save_replay_buffer(self, path):
|
| 145 |
"""Saves the current replay buffer to a specified file path using pickle."""
|
|
@@ -416,7 +416,7 @@ class HongikAIEngine(BaseEngine):
|
|
| 416 |
self.training_step_counter += 1
|
| 417 |
loss = self._train_model() if len(self.replay_buffer) >= self.TRAINING_BATCH_SIZE else None
|
| 418 |
if loss is not None:
|
| 419 |
-
print(f" Training complete! (Final loss: {loss:.4f})\n======================================="
|
| 420 |
|
| 421 |
log_data = {
|
| 422 |
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
|
|
|
|
| 69 |
the neural network model and replay buffer, and preparing for training.
|
| 70 |
"""
|
| 71 |
super().__init__(katrain, config)
|
| 72 |
+
print("Initializing Hongik AI Integrated Engine...")
|
| 73 |
|
| 74 |
from appdirs import user_data_dir
|
| 75 |
APP_NAME = "HongikAI"
|
|
|
|
| 139 |
class MockProcess: poll = lambda self: None
|
| 140 |
self.katago_process = self.hongik_process = MockProcess()
|
| 141 |
self.sound_index = False
|
| 142 |
+
print("Hongik AI Engine ready!")
|
| 143 |
|
| 144 |
def save_replay_buffer(self, path):
|
| 145 |
"""Saves the current replay buffer to a specified file path using pickle."""
|
|
|
|
| 416 |
self.training_step_counter += 1
|
| 417 |
loss = self._train_model() if len(self.replay_buffer) >= self.TRAINING_BATCH_SIZE else None
|
| 418 |
if loss is not None:
|
| 419 |
+
print(f" Training complete! (Final loss: {loss:.4f})\n=======================================")
|
| 420 |
|
| 421 |
log_data = {
|
| 422 |
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
|