Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,72 @@
|
|
| 2 |
tags:
|
| 3 |
- model_hub_mixin
|
| 4 |
- pytorch_model_hub_mixin
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- model_hub_mixin
|
| 4 |
- pytorch_model_hub_mixin
|
| 5 |
+
license: mit
|
| 6 |
+
library_name: pytorch
|
| 7 |
---
|
| 8 |
|
| 9 |
+
# FaceNet
|
| 10 |
+
|
| 11 |
+
## Model Description
|
| 12 |
+
facenet uses an Inception Residual Masking Network pretrained on VGGFace2 to classify facial identities. Facenet also exposes a 512 latent facial embedding space.
|
| 13 |
+
|
| 14 |
+
## Model Details
|
| 15 |
+
- **Model Type**: Convolutional Neural Network (CNN)
|
| 16 |
+
- **Architecture**: Inception Residual masking network. Output layer classifies facial identities. Also provides a 512 dimensional representation layer
|
| 17 |
+
- **Input Size**: 112 x 112 pixels
|
| 18 |
+
- **Framework**: PyTorch
|
| 19 |
+
|
| 20 |
+
## Model Sources
|
| 21 |
+
- **Repository**: [GitHub Repository](https://github.com/timesler/facenet-pytorch/tree/master)
|
| 22 |
+
- **Paper**: [FaceNet: A Unified Embedding for Face Recognition and Clustering](https://arxiv.org/abs/1503.03832)
|
| 23 |
+
|
| 24 |
+
## Citation
|
| 25 |
+
If you use this model in your research or application, please cite the following paper:
|
| 26 |
+
|
| 27 |
+
F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering, arXiv:1503.03832, 2015.
|
| 28 |
+
|
| 29 |
+
```
|
| 30 |
+
@inproceedings{schroff2015facenet,
|
| 31 |
+
title={Facenet: A unified embedding for face recognition and clustering},
|
| 32 |
+
author={Schroff, Florian and Kalenichenko, Dmitry and Philbin, James},
|
| 33 |
+
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
| 34 |
+
pages={815--823},
|
| 35 |
+
year={2015}
|
| 36 |
+
}
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
## Acknowledgements
|
| 40 |
+
We thank Tim Esler and David Sandberg for sharing their code and training weights with a permissive license.
|
| 41 |
+
|
| 42 |
+
## Example Useage
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
import numpy as np
|
| 46 |
+
import torch
|
| 47 |
+
import torch.nn as nn
|
| 48 |
+
from feat.identity_detectors.facenet.facenet_model import InceptionResnetV1
|
| 49 |
+
from huggingface_hub import hf_hub_download
|
| 50 |
+
|
| 51 |
+
device = 'cpu'
|
| 52 |
+
identity_detector = InceptionResnetV1(
|
| 53 |
+
pretrained=None,
|
| 54 |
+
classify=False,
|
| 55 |
+
num_classes=None,
|
| 56 |
+
dropout_prob=0.6,
|
| 57 |
+
device=device,
|
| 58 |
+
)
|
| 59 |
+
identity_detector.logits = nn.Linear(512, 8631)
|
| 60 |
+
identity_model_file = hf_hub_download(repo_id='py-feat/facenet', filename="facenet_20180402_114759_vggface2.pth")
|
| 61 |
+
identity_detector.load_state_dict(torch.load(identity_model_file, map_location=device))
|
| 62 |
+
identity_detector.eval()
|
| 63 |
+
identity_detector.to(device)
|
| 64 |
+
|
| 65 |
+
# Test model
|
| 66 |
+
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224]
|
| 67 |
+
|
| 68 |
+
# 512 dimensional Facial Embeddings
|
| 69 |
+
identity_embeddings = identity_detector.forward(extracted_faces)
|
| 70 |
+
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
|