qaihm-bot commited on
Commit
eef4062
·
verified ·
1 Parent(s): 62724ff

See https://github.com/quic/ai-hub-models/releases/v0.44.0 for changelog.

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +1 -0
  2. README.md +264 -0
  3. precompiled/qualcomm-qcs8275-proxy/GKT_float.bin +3 -0
  4. precompiled/qualcomm-qcs8275-proxy/GKT_w8a16_mixed_fp16.bin +3 -0
  5. precompiled/qualcomm-qcs8275-proxy/tool-versions.yaml +3 -0
  6. precompiled/qualcomm-qcs8450-proxy/GKT_float.bin +3 -0
  7. precompiled/qualcomm-qcs8450-proxy/GKT_w8a16_mixed_fp16.bin +3 -0
  8. precompiled/qualcomm-qcs8450-proxy/tool-versions.yaml +3 -0
  9. precompiled/qualcomm-qcs8550-proxy/GKT_float.bin +3 -0
  10. precompiled/qualcomm-qcs8550-proxy/GKT_float.onnx.zip +3 -0
  11. precompiled/qualcomm-qcs8550-proxy/GKT_w8a16_mixed_fp16.bin +3 -0
  12. precompiled/qualcomm-qcs8550-proxy/GKT_w8a16_mixed_fp16.onnx.zip +3 -0
  13. precompiled/qualcomm-qcs8550-proxy/tool-versions.yaml +4 -0
  14. precompiled/qualcomm-qcs9075-proxy/GKT_float.bin +3 -0
  15. precompiled/qualcomm-qcs9075-proxy/GKT_w8a16_mixed_fp16.bin +3 -0
  16. precompiled/qualcomm-qcs9075-proxy/tool-versions.yaml +3 -0
  17. precompiled/qualcomm-sa7255p/GKT_float.bin +3 -0
  18. precompiled/qualcomm-sa7255p/GKT_w8a16_mixed_fp16.bin +3 -0
  19. precompiled/qualcomm-sa7255p/tool-versions.yaml +3 -0
  20. precompiled/qualcomm-sa8255p-proxy/GKT_float.bin +3 -0
  21. precompiled/qualcomm-sa8255p-proxy/GKT_w8a16_mixed_fp16.bin +3 -0
  22. precompiled/qualcomm-sa8255p-proxy/tool-versions.yaml +3 -0
  23. precompiled/qualcomm-sa8295p/GKT_float.bin +3 -0
  24. precompiled/qualcomm-sa8295p/GKT_w8a16_mixed_fp16.bin +3 -0
  25. precompiled/qualcomm-sa8295p/tool-versions.yaml +3 -0
  26. precompiled/qualcomm-sa8650p-proxy/GKT_float.bin +3 -0
  27. precompiled/qualcomm-sa8650p-proxy/GKT_w8a16_mixed_fp16.bin +3 -0
  28. precompiled/qualcomm-sa8650p-proxy/tool-versions.yaml +3 -0
  29. precompiled/qualcomm-sa8775p/GKT_float.bin +3 -0
  30. precompiled/qualcomm-sa8775p/GKT_w8a16_mixed_fp16.bin +3 -0
  31. precompiled/qualcomm-sa8775p/tool-versions.yaml +3 -0
  32. precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_float.bin +3 -0
  33. precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_float.onnx.zip +3 -0
  34. precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_w8a16_mixed_fp16.bin +3 -0
  35. precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_w8a16_mixed_fp16.onnx.zip +3 -0
  36. precompiled/qualcomm-snapdragon-8-elite-for-galaxy/tool-versions.yaml +4 -0
  37. precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_float.bin +3 -0
  38. precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_float.onnx.zip +3 -0
  39. precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_w8a16_mixed_fp16.bin +3 -0
  40. precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_w8a16_mixed_fp16.onnx.zip +3 -0
  41. precompiled/qualcomm-snapdragon-8-elite-gen5/tool-versions.yaml +4 -0
  42. precompiled/qualcomm-snapdragon-8gen3/GKT_float.bin +3 -0
  43. precompiled/qualcomm-snapdragon-8gen3/GKT_float.onnx.zip +3 -0
  44. precompiled/qualcomm-snapdragon-8gen3/GKT_w8a16_mixed_fp16.bin +3 -0
  45. precompiled/qualcomm-snapdragon-8gen3/GKT_w8a16_mixed_fp16.onnx.zip +3 -0
  46. precompiled/qualcomm-snapdragon-8gen3/tool-versions.yaml +4 -0
  47. precompiled/qualcomm-snapdragon-x-elite/GKT_float.bin +3 -0
  48. precompiled/qualcomm-snapdragon-x-elite/GKT_float.onnx.zip +3 -0
  49. precompiled/qualcomm-snapdragon-x-elite/GKT_w8a16_mixed_fp16.bin +3 -0
  50. precompiled/qualcomm-snapdragon-x-elite/GKT_w8a16_mixed_fp16.onnx.zip +3 -0
LICENSE ADDED
@@ -0,0 +1 @@
 
 
1
+ The license of the original trained model can be found at https://github.com/hustvl/GKT/blob/main/LICENSE.
README.md ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: other
4
+ tags:
5
+ - android
6
+ pipeline_tag: other
7
+
8
+ ---
9
+
10
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/gkt/web-assets/model_demo.png)
11
+
12
+ # GKT: Optimized for Mobile Deployment
13
+ ## Construct a bird’s eye view from sensors mounted on a vehicle
14
+
15
+
16
+ Geometry-guided Kernel Transformer is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.
17
+
18
+ This model is an implementation of GKT found [here](https://github.com/hustvl/GKT/ https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
19
+
20
+
21
+ This repository provides scripts to run GKT on Qualcomm® devices.
22
+ More details on model performance across various devices, can be found
23
+ [here](https://aihub.qualcomm.com/models/gkt).
24
+
25
+
26
+
27
+ ### Model Details
28
+
29
+ - **Model Type:** Model_use_case.driver_assistance
30
+ - **Model Stats:**
31
+ - Model checkpoint: map_segmentation_gkt_7x1_conv_setting2.ckpt
32
+ - Input resolution: 1 x 6 x 3 x 224 x 480
33
+ - Number of parameters: 1.18M
34
+ - Model size: 4.66 MB
35
+
36
+ | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
37
+ |---|---|---|---|---|---|---|---|---|
38
+ | GKT | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 178.364 ms | 4 - 13 MB | NPU | Use Export Script |
39
+ | GKT | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 204.304 ms | 7 - 25 MB | NPU | Use Export Script |
40
+ | GKT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 105.774 ms | 8 - 10 MB | NPU | Use Export Script |
41
+ | GKT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 80.205 ms | 7 - 12 MB | NPU | Use Export Script |
42
+ | GKT | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 107.699 ms | 0 - 9 MB | NPU | Use Export Script |
43
+ | GKT | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 178.364 ms | 4 - 13 MB | NPU | Use Export Script |
44
+ | GKT | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 106.111 ms | 8 - 10 MB | NPU | Use Export Script |
45
+ | GKT | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 139.075 ms | 0 - 17 MB | NPU | Use Export Script |
46
+ | GKT | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 105.282 ms | 8 - 10 MB | NPU | Use Export Script |
47
+ | GKT | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 107.699 ms | 0 - 9 MB | NPU | Use Export Script |
48
+ | GKT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 76.659 ms | 8 - 28 MB | NPU | Use Export Script |
49
+ | GKT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 55.17 ms | 8 - 26 MB | NPU | Use Export Script |
50
+ | GKT | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 67.44 ms | 7 - 20 MB | NPU | Use Export Script |
51
+ | GKT | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 50.897 ms | 1 - 11 MB | NPU | Use Export Script |
52
+ | GKT | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 56.469 ms | 7 - 18 MB | NPU | Use Export Script |
53
+ | GKT | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 40.318 ms | 8 - 18 MB | NPU | Use Export Script |
54
+ | GKT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 99.942 ms | 7 - 7 MB | NPU | Use Export Script |
55
+ | GKT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 77.464 ms | 7 - 7 MB | NPU | Use Export Script |
56
+ | GKT | w8a16_mixed_fp16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 192.276 ms | 4 - 13 MB | NPU | Use Export Script |
57
+ | GKT | w8a16_mixed_fp16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 145.984 ms | 4 - 24 MB | NPU | Use Export Script |
58
+ | GKT | w8a16_mixed_fp16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 130.987 ms | 4 - 6 MB | NPU | Use Export Script |
59
+ | GKT | w8a16_mixed_fp16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 128.848 ms | 4 - 6 MB | NPU | Use Export Script |
60
+ | GKT | w8a16_mixed_fp16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 130.062 ms | 1 - 11 MB | NPU | Use Export Script |
61
+ | GKT | w8a16_mixed_fp16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 192.276 ms | 4 - 13 MB | NPU | Use Export Script |
62
+ | GKT | w8a16_mixed_fp16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 129.938 ms | 4 - 6 MB | NPU | Use Export Script |
63
+ | GKT | w8a16_mixed_fp16 | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 153.875 ms | 0 - 17 MB | NPU | Use Export Script |
64
+ | GKT | w8a16_mixed_fp16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 130.476 ms | 4 - 7 MB | NPU | Use Export Script |
65
+ | GKT | w8a16_mixed_fp16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 130.062 ms | 1 - 11 MB | NPU | Use Export Script |
66
+ | GKT | w8a16_mixed_fp16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 93.949 ms | 4 - 22 MB | NPU | Use Export Script |
67
+ | GKT | w8a16_mixed_fp16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 97.679 ms | 4 - 23 MB | NPU | Use Export Script |
68
+ | GKT | w8a16_mixed_fp16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 82.23 ms | 4 - 20 MB | NPU | Use Export Script |
69
+ | GKT | w8a16_mixed_fp16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 83.95 ms | 0 - 14 MB | NPU | Use Export Script |
70
+ | GKT | w8a16_mixed_fp16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 74.446 ms | 4 - 15 MB | NPU | Use Export Script |
71
+ | GKT | w8a16_mixed_fp16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 70.609 ms | 4 - 14 MB | NPU | Use Export Script |
72
+ | GKT | w8a16_mixed_fp16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 130.182 ms | 4 - 4 MB | NPU | Use Export Script |
73
+ | GKT | w8a16_mixed_fp16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 129.483 ms | 7 - 7 MB | NPU | Use Export Script |
74
+
75
+
76
+
77
+
78
+ ## Installation
79
+
80
+
81
+ Install the package via pip:
82
+ ```bash
83
+ # NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
84
+ pip install nuscenes-devkit==1.2.0 --no-deps
85
+ pip install "qai-hub-models[gkt]"
86
+ ```
87
+
88
+
89
+ ## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
90
+
91
+ Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
92
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
93
+
94
+ With this API token, you can configure your client to run models on the cloud
95
+ hosted devices.
96
+ ```bash
97
+ qai-hub configure --api_token API_TOKEN
98
+ ```
99
+ Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.
100
+
101
+
102
+
103
+ ## Demo off target
104
+
105
+ The package contains a simple end-to-end demo that downloads pre-trained
106
+ weights and runs this model on a sample input.
107
+
108
+ ```bash
109
+ python -m qai_hub_models.models.gkt.demo
110
+ ```
111
+
112
+ The above demo runs a reference implementation of pre-processing, model
113
+ inference, and post processing.
114
+
115
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
116
+ environment, please add the following to your cell (instead of the above).
117
+ ```
118
+ %run -m qai_hub_models.models.gkt.demo
119
+ ```
120
+
121
+
122
+ ### Run model on a cloud-hosted device
123
+
124
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
125
+ device. This script does the following:
126
+ * Performance check on-device on a cloud-hosted device
127
+ * Downloads compiled assets that can be deployed on-device for Android.
128
+ * Accuracy check between PyTorch and on-device outputs.
129
+
130
+ ```bash
131
+ python -m qai_hub_models.models.gkt.export
132
+ ```
133
+
134
+
135
+
136
+ ## How does this work?
137
+
138
+ This [export script](https://aihub.qualcomm.com/models/gkt/qai_hub_models/models/GKT/export.py)
139
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
140
+ on-device. Lets go through each step below in detail:
141
+
142
+ Step 1: **Compile model for on-device deployment**
143
+
144
+ To compile a PyTorch model for on-device deployment, we first trace the model
145
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
146
+
147
+ ```python
148
+ import torch
149
+
150
+ import qai_hub as hub
151
+ from qai_hub_models.models.gkt import Model
152
+
153
+ # Load the model
154
+ torch_model = Model.from_pretrained()
155
+
156
+ # Device
157
+ device = hub.Device("Samsung Galaxy S25")
158
+
159
+ # Trace model
160
+ input_shape = torch_model.get_input_spec()
161
+ sample_inputs = torch_model.sample_inputs()
162
+
163
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
164
+
165
+ # Compile model on a specific device
166
+ compile_job = hub.submit_compile_job(
167
+ model=pt_model,
168
+ device=device,
169
+ input_specs=torch_model.get_input_spec(),
170
+ )
171
+
172
+ # Get target model to run on-device
173
+ target_model = compile_job.get_target_model()
174
+
175
+ ```
176
+
177
+
178
+ Step 2: **Performance profiling on cloud-hosted device**
179
+
180
+ After compiling models from step 1. Models can be profiled model on-device using the
181
+ `target_model`. Note that this scripts runs the model on a device automatically
182
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
183
+ provided job URL to view a variety of on-device performance metrics.
184
+ ```python
185
+ profile_job = hub.submit_profile_job(
186
+ model=target_model,
187
+ device=device,
188
+ )
189
+
190
+ ```
191
+
192
+ Step 3: **Verify on-device accuracy**
193
+
194
+ To verify the accuracy of the model on-device, you can run on-device inference
195
+ on sample input data on the same cloud hosted device.
196
+ ```python
197
+ input_data = torch_model.sample_inputs()
198
+ inference_job = hub.submit_inference_job(
199
+ model=target_model,
200
+ device=device,
201
+ inputs=input_data,
202
+ )
203
+ on_device_output = inference_job.download_output_data()
204
+
205
+ ```
206
+ With the output of the model, you can compute like PSNR, relative errors or
207
+ spot check the output with expected output.
208
+
209
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
210
+ AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).
211
+
212
+
213
+
214
+ ## Run demo on a cloud-hosted device
215
+
216
+ You can also run the demo on-device.
217
+
218
+ ```bash
219
+ python -m qai_hub_models.models.gkt.demo --eval-mode on-device
220
+ ```
221
+
222
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
223
+ environment, please add the following to your cell (instead of the above).
224
+ ```
225
+ %run -m qai_hub_models.models.gkt.demo -- --eval-mode on-device
226
+ ```
227
+
228
+
229
+ ## Deploying compiled model to Android
230
+
231
+
232
+ The models can be deployed using multiple runtimes:
233
+ - TensorFlow Lite (`.tflite` export): [This
234
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
235
+ guide to deploy the .tflite model in an Android application.
236
+
237
+
238
+ - QNN (`.so` export ): This [sample
239
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
240
+ provides instructions on how to use the `.so` shared library in an Android application.
241
+
242
+
243
+ ## View on Qualcomm® AI Hub
244
+ Get more details on GKT's performance across various devices [here](https://aihub.qualcomm.com/models/gkt).
245
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
246
+
247
+
248
+ ## License
249
+ * The license for the original implementation of GKT can be found
250
+ [here](https://github.com/hustvl/GKT/blob/main/LICENSE).
251
+
252
+
253
+
254
+ ## References
255
+ * [Efficient and Robust 2D-to-BEV Representation Learning via Geometry-guided Kernel Transformer](https://arxiv.org/abs/2206.04584)
256
+ * [Source Model Implementation](https://github.com/hustvl/GKT/ https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
257
+
258
+
259
+
260
+ ## Community
261
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
262
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
263
+
264
+
precompiled/qualcomm-qcs8275-proxy/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a23264b2987532a0f8a5f6124c44acbb405535c93cca01b3de51a9bf6ce67bce
3
+ size 8822784
precompiled/qualcomm-qcs8275-proxy/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86dfc9c105d2655b4744520b2805daabc6b24441dab4ad9d644b56cd534637ab
3
+ size 10567680
precompiled/qualcomm-qcs8275-proxy/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518-auto
precompiled/qualcomm-qcs8450-proxy/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6c7002c964f76d57599d6bde1335cfd77a9f34a5d7fce54ce4124e3cd67d04f
3
+ size 11218944
precompiled/qualcomm-qcs8450-proxy/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa8cc124c23cd1b8e2431795ffbe8ed8d6e7d13facb7538d63225fb705d3067e
3
+ size 11288576
precompiled/qualcomm-qcs8450-proxy/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518
precompiled/qualcomm-qcs8550-proxy/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7ea4beed9d28a74d5931075d75e953693a7835738e23f0589e6e8d77fd99256
3
+ size 8835072
precompiled/qualcomm-qcs8550-proxy/GKT_float.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4423431a40704893fdac27afdfed2a0ffceca31e4493496ae4348dd621391c34
3
+ size 4331438
precompiled/qualcomm-qcs8550-proxy/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b313d4f6daf9bf9d1de2031d984aad9853bbaf89c1839923bfb8baf3a57785e
3
+ size 10567680
precompiled/qualcomm-qcs8550-proxy/GKT_w8a16_mixed_fp16.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6086b4995c563c3d9c4c873abcb3e86d483f03434f4b995ae31df627a0b2bc8
3
+ size 4742431
precompiled/qualcomm-qcs8550-proxy/tool-versions.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ tool_versions:
2
+ precompiled_qnn_onnx:
3
+ qairt: 2.37.1.250807093845_124904
4
+ onnx_runtime: 1.23.0
precompiled/qualcomm-qcs9075-proxy/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0215705f8b6a70bd2794e5215fa97b2c7b83c8f03b6a4a01225565c3292362
3
+ size 8843264
precompiled/qualcomm-qcs9075-proxy/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7801a6ef1d010d84ab3ba1cee81731e09c1a8abb4a793a0da3c8ec53b77df1b4
3
+ size 10567680
precompiled/qualcomm-qcs9075-proxy/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518-auto
precompiled/qualcomm-sa7255p/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a23264b2987532a0f8a5f6124c44acbb405535c93cca01b3de51a9bf6ce67bce
3
+ size 8822784
precompiled/qualcomm-sa7255p/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86dfc9c105d2655b4744520b2805daabc6b24441dab4ad9d644b56cd534637ab
3
+ size 10567680
precompiled/qualcomm-sa7255p/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518-auto
precompiled/qualcomm-sa8255p-proxy/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aa6ce7708ae13f733084495ecc53f818725e22d546f51d3e3f5c14255685838
3
+ size 8835072
precompiled/qualcomm-sa8255p-proxy/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b34e66eac0822ebd4eda20182eb51073c3218fa9568fabad18539991409e25a
3
+ size 10567680
precompiled/qualcomm-sa8255p-proxy/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518
precompiled/qualcomm-sa8295p/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9adcd404f6921ce90b3568014a7fe0dc406ec98cc2b1d01caa9ca4a963845b73
3
+ size 10940416
precompiled/qualcomm-sa8295p/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c952e89aca30300a2fbe4f53017de1afb1984fbf4d50c509731eca5d495b393e
3
+ size 11272192
precompiled/qualcomm-sa8295p/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518-auto
precompiled/qualcomm-sa8650p-proxy/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a40e0a6e29ad7866a3b320382b88314c2a79efa2a8659d3842d76e71f9bcd36
3
+ size 8835072
precompiled/qualcomm-sa8650p-proxy/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6538a06aceff771213b90e6686b511de881e56140ddad27397e67fc2e325555
3
+ size 10567680
precompiled/qualcomm-sa8650p-proxy/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518
precompiled/qualcomm-sa8775p/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0215705f8b6a70bd2794e5215fa97b2c7b83c8f03b6a4a01225565c3292362
3
+ size 8843264
precompiled/qualcomm-sa8775p/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7801a6ef1d010d84ab3ba1cee81731e09c1a8abb4a793a0da3c8ec53b77df1b4
3
+ size 10567680
precompiled/qualcomm-sa8775p/tool-versions.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tool_versions:
2
+ qnn_context_binary:
3
+ qairt: 2.41.0.251128145156_191518-auto
precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8608c1408ca54a89afaf8d334733c6b6c6e97e556336c195665e494908829e38
3
+ size 8847360
precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_float.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a036708c5412752aeb0edf0daca95a5e7a3a85859e90e5deea860065d30377f
3
+ size 4312150
precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88210b7d1b6407c5a052a0db93b0980dbacaba838e8c11d9f4d26074bb1e6b74
3
+ size 10489856
precompiled/qualcomm-snapdragon-8-elite-for-galaxy/GKT_w8a16_mixed_fp16.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d40dc38632b9c2b2eca19e94d04909de7aea104755f93f9ead980d39e2053bb
3
+ size 4673764
precompiled/qualcomm-snapdragon-8-elite-for-galaxy/tool-versions.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ tool_versions:
2
+ precompiled_qnn_onnx:
3
+ qairt: 2.37.1.250807093845_124904
4
+ onnx_runtime: 1.23.0
precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b3fafcb1fc9a5c80bc1fcccf40f66e2d36bc9a3a69945e97b70af3c228adfe
3
+ size 9072640
precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_float.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b5af48b5c64bebb60b594453fbf58f99836fc2e4cbb02c19512ed369bd06036
3
+ size 4542113
precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:284b06819972a8147a76cbb613136c628c7197711dc6f1c575709297912a0ac3
3
+ size 10776576
precompiled/qualcomm-snapdragon-8-elite-gen5/GKT_w8a16_mixed_fp16.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9339dcb42a89ac41e30ac667941c681ef9b2bd63d8ccc9b821cd045806ef7090
3
+ size 4780048
precompiled/qualcomm-snapdragon-8-elite-gen5/tool-versions.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ tool_versions:
2
+ precompiled_qnn_onnx:
3
+ qairt: 2.37.1.250807093845_124904
4
+ onnx_runtime: 1.23.0
precompiled/qualcomm-snapdragon-8gen3/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57828124c057b9522b41e37d27bf050955caca05238aa6853a0ba7b270b10d1c
3
+ size 8835072
precompiled/qualcomm-snapdragon-8gen3/GKT_float.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0ba5820875fbba89c7d7339cb8b21e3d7feb5483e90b206a5b43b99e538e0cf
3
+ size 4326975
precompiled/qualcomm-snapdragon-8gen3/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d3696f1f90a1e8b6c560e63328dfa8585e08d5525b0311d98b46a3684a1e80a
3
+ size 10567680
precompiled/qualcomm-snapdragon-8gen3/GKT_w8a16_mixed_fp16.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57e862369a95364e6c6b52eef0e463307b204191c2643cf8761a3479307e3f00
3
+ size 4742446
precompiled/qualcomm-snapdragon-8gen3/tool-versions.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ tool_versions:
2
+ precompiled_qnn_onnx:
3
+ qairt: 2.37.1.250807093845_124904
4
+ onnx_runtime: 1.23.0
precompiled/qualcomm-snapdragon-x-elite/GKT_float.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95b556e32207ae8e4dd7d4ff659f1c0bdbfd3fb50127fb63c7dbb63161f5a902
3
+ size 8835072
precompiled/qualcomm-snapdragon-x-elite/GKT_float.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91331b01f108629c61ed0eb1eae1bb6824c5a623b6409649fe0e54cdea7755ba
3
+ size 4332971
precompiled/qualcomm-snapdragon-x-elite/GKT_w8a16_mixed_fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd637a6ec60c0ed8f02c57da9dfd297a886f246a4b7b7360251980061a62b3cb
3
+ size 10567680
precompiled/qualcomm-snapdragon-x-elite/GKT_w8a16_mixed_fp16.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e7849d0954eedeb18be0de9552977a67f0f55466d984cd74b2b79edf278d4f3
3
+ size 4742494