--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5615275813295615 - name: Recall type: recall value: 0.36793327154772937 - name: F1 type: f1 value: 0.444568868980963 - name: Accuracy type: accuracy value: 0.9460476251549741 --- # ner_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2679 - Precision: 0.5615 - Recall: 0.3679 - F1: 0.4446 - Accuracy: 0.9460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2479 | 0.5133 | 0.3753 | 0.4336 | 0.9449 | | No log | 2.0 | 426 | 0.2679 | 0.5615 | 0.3679 | 0.4446 | 0.9460 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.0+cu126 - Datasets 3.6.0 - Tokenizers 0.22.2