File size: 8,523 Bytes
188f311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.

import numpy as np
import os
import sys
import torch

try:
    from urllib import urlretrieve
except ImportError:
    from urllib.request import urlretrieve

__all__ = [
    "sort_dict",
    "get_same_padding",
    "get_split_list",
    "list_sum",
    "list_mean",
    "list_join",
    "subset_mean",
    "sub_filter_start_end",
    "min_divisible_value",
    "val2list",
    "download_url",
    "write_log",
    "pairwise_accuracy",
    "accuracy",
    "AverageMeter",
    "MultiClassAverageMeter",
    "DistributedMetric",
    "DistributedTensor",
]


def sort_dict(src_dict, reverse=False, return_dict=True):
    output = sorted(src_dict.items(), key=lambda x: x[1], reverse=reverse)
    if return_dict:
        return dict(output)
    else:
        return output


def get_same_padding(kernel_size):
    if isinstance(kernel_size, tuple):
        assert len(kernel_size) == 2, "invalid kernel size: %s" % kernel_size
        p1 = get_same_padding(kernel_size[0])
        p2 = get_same_padding(kernel_size[1])
        return p1, p2
    assert isinstance(kernel_size, int), "kernel size should be either `int` or `tuple`"
    assert kernel_size % 2 > 0, "kernel size should be odd number"
    return kernel_size // 2


def get_split_list(in_dim, child_num, accumulate=False):
    in_dim_list = [in_dim // child_num] * child_num
    for _i in range(in_dim % child_num):
        in_dim_list[_i] += 1
    if accumulate:
        for i in range(1, child_num):
            in_dim_list[i] += in_dim_list[i - 1]
    return in_dim_list


def list_sum(x):
    return x[0] if len(x) == 1 else x[0] + list_sum(x[1:])


def list_mean(x):
    return list_sum(x) / len(x)


def list_join(val_list, sep="\t"):
    return sep.join([str(val) for val in val_list])


def subset_mean(val_list, sub_indexes):
    sub_indexes = val2list(sub_indexes, 1)
    return list_mean([val_list[idx] for idx in sub_indexes])


def sub_filter_start_end(kernel_size, sub_kernel_size):
    center = kernel_size // 2
    dev = sub_kernel_size // 2
    start, end = center - dev, center + dev + 1
    assert end - start == sub_kernel_size
    return start, end


def min_divisible_value(n1, v1):
    """make sure v1 is divisible by n1, otherwise decrease v1"""
    if v1 >= n1:
        return n1
    while n1 % v1 != 0:
        v1 -= 1
    return v1


def val2list(val, repeat_time=1):
    if isinstance(val, list) or isinstance(val, np.ndarray):
        return val
    elif isinstance(val, tuple):
        return list(val)
    else:
        return [val for _ in range(repeat_time)]


def download_url(url, model_dir="~/.torch/", overwrite=False):
    target_dir = url.split("/")[-1]
    model_dir = os.path.expanduser(model_dir)
    try:
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        model_dir = os.path.join(model_dir, target_dir)
        cached_file = model_dir
        if not os.path.exists(cached_file) or overwrite:
            sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
            urlretrieve(url, cached_file)
        return cached_file
    except Exception as e:
        # remove lock file so download can be executed next time.
        os.remove(os.path.join(model_dir, "download.lock"))
        sys.stderr.write("Failed to download from url %s" % url + "\n" + str(e) + "\n")
        return None


def write_log(logs_path, log_str, prefix="valid", should_print=True, mode="a"):
    if not os.path.exists(logs_path):
        os.makedirs(logs_path, exist_ok=True)
    """ prefix: valid, train, test """
    if prefix in ["valid", "test"]:
        with open(os.path.join(logs_path, "valid_console.txt"), mode) as fout:
            fout.write(log_str + "\n")
            fout.flush()
    if prefix in ["valid", "test", "train"]:
        with open(os.path.join(logs_path, "train_console.txt"), mode) as fout:
            if prefix in ["valid", "test"]:
                fout.write("=" * 10)
            fout.write(log_str + "\n")
            fout.flush()
    else:
        with open(os.path.join(logs_path, "%s.txt" % prefix), mode) as fout:
            fout.write(log_str + "\n")
            fout.flush()
    if should_print:
        print(log_str)


def pairwise_accuracy(la, lb, n_samples=200000):
    n = len(la)
    assert n == len(lb)
    total = 0
    count = 0
    for _ in range(n_samples):
        i = np.random.randint(n)
        j = np.random.randint(n)
        while i == j:
            j = np.random.randint(n)
        if la[i] >= la[j] and lb[i] >= lb[j]:
            count += 1
        if la[i] < la[j] and lb[i] < lb[j]:
            count += 1
        total += 1
    return float(count) / total




def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.reshape(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


class AverageMeter(object):
    """
    Computes and stores the average and current value
    Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
    """

    def __init__(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


class MultiClassAverageMeter:

    """Multi Binary Classification Tasks"""

    def __init__(self, num_classes, balanced=False, **kwargs):

        super(MultiClassAverageMeter, self).__init__()
        self.num_classes = num_classes
        self.balanced = balanced

        self.counts = []
        for k in range(self.num_classes):
            self.counts.append(np.ndarray((2, 2), dtype=np.float32))

        self.reset()

    def reset(self):
        for k in range(self.num_classes):
            self.counts[k].fill(0)

    def add(self, outputs, targets):
        outputs = outputs.data.cpu().numpy()
        targets = targets.data.cpu().numpy()

        for k in range(self.num_classes):
            output = np.argmax(outputs[:, k, :], axis=1)
            target = targets[:, k]

            x = output + 2 * target
            bincount = np.bincount(x.astype(np.int32), minlength=2 ** 2)

            self.counts[k] += bincount.reshape((2, 2))

    def value(self):
        mean = 0
        for k in range(self.num_classes):
            if self.balanced:
                value = np.mean(
                    (
                        self.counts[k]
                        / np.maximum(np.sum(self.counts[k], axis=1), 1)[:, None]
                    ).diagonal()
                )
            else:
                value = np.sum(self.counts[k].diagonal()) / np.maximum(
                    np.sum(self.counts[k]), 1
                )

            mean += value / self.num_classes * 100.0
        return mean


class DistributedMetric(object):
    """
    Horovod: average metrics from distributed training.
    """

    def __init__(self, name):
        self.name = name
        self.sum = torch.zeros(1)[0]
        self.count = torch.zeros(1)[0]

    def update(self, val, delta_n=1):
        import horovod.torch as hvd

        val *= delta_n
        self.sum += hvd.allreduce(val.detach().cpu(), name=self.name)
        self.count += delta_n

    @property
    def avg(self):
        return self.sum / self.count


class DistributedTensor(object):
    def __init__(self, name):
        self.name = name
        self.sum = None
        self.count = torch.zeros(1)[0]
        self.synced = False

    def update(self, val, delta_n=1):
        val *= delta_n
        if self.sum is None:
            self.sum = val.detach()
        else:
            self.sum += val.detach()
        self.count += delta_n

    @property
    def avg(self):
        import horovod.torch as hvd

        if not self.synced:
            self.sum = hvd.allreduce(self.sum, name=self.name)
            self.synced = True
        return self.sum / self.count