File size: 6,943 Bytes
188f311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.

import math
import copy
import time
import torch
import torch.nn as nn

__all__ = [
    "mix_images",
    "mix_labels",
    "label_smooth",
    "cross_entropy_loss_with_soft_target",
    "cross_entropy_with_label_smoothing",
    "clean_num_batch_tracked",
    "rm_bn_from_net",
    "get_net_device",
    "count_parameters",
    "count_net_flops",
    "measure_net_latency",
    "get_net_info",
    "build_optimizer",
    "calc_learning_rate",
]


""" Mixup """


def mix_images(images, lam):
    flipped_images = torch.flip(images, dims=[0])  # flip along the batch dimension
    return lam * images + (1 - lam) * flipped_images


def mix_labels(target, lam, n_classes, label_smoothing=0.1):
    onehot_target = label_smooth(target, n_classes, label_smoothing)
    flipped_target = torch.flip(onehot_target, dims=[0])
    return lam * onehot_target + (1 - lam) * flipped_target


""" Label smooth """


def label_smooth(target, n_classes: int, label_smoothing=0.1):
    # convert to one-hot
    batch_size = target.size(0)
    target = torch.unsqueeze(target, 1)
    soft_target = torch.zeros((batch_size, n_classes), device=target.device)
    soft_target.scatter_(1, target, 1)
    # label smoothing
    soft_target = soft_target * (1 - label_smoothing) + label_smoothing / n_classes
    return soft_target


def cross_entropy_loss_with_soft_target(pred, soft_target):
    logsoftmax = nn.LogSoftmax()
    return torch.mean(torch.sum(-soft_target * logsoftmax(pred), 1))


def cross_entropy_with_label_smoothing(pred, target, label_smoothing=0.1):
    soft_target = label_smooth(target, pred.size(1), label_smoothing)
    return cross_entropy_loss_with_soft_target(pred, soft_target)


""" BN related """


def clean_num_batch_tracked(net):
    for m in net.modules():
        if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
            if m.num_batches_tracked is not None:
                m.num_batches_tracked.zero_()


def rm_bn_from_net(net):
    for m in net.modules():
        if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
            m.forward = lambda x: x


""" Network profiling """


def get_net_device(net):
    return net.parameters().__next__().device


def count_parameters(net):
    total_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
    return total_params


def count_net_flops(net, data_shape=(1, 3, 32, 32)):
    from .flops_counter import profile

    if isinstance(net, nn.DataParallel):
        net = net.module

    flop, _ = profile(copy.deepcopy(net), data_shape)
    return flop


def measure_net_latency(
    net, l_type="gpu8", fast=True, input_shape=(3, 32, 32), clean=False
):
    if isinstance(net, nn.DataParallel):
        net = net.module

    # remove bn from graph
    rm_bn_from_net(net)

    # return `ms`
    if "gpu" in l_type:
        l_type, batch_size = l_type[:3], int(l_type[3:])
    else:
        batch_size = 1

    data_shape = [batch_size] + list(input_shape)
    if l_type == "cpu":
        if fast:
            n_warmup = 5
            n_sample = 10
        else:
            n_warmup = 50
            n_sample = 50
        if get_net_device(net) != torch.device("cpu"):
            if not clean:
                print("move net to cpu for measuring cpu latency")
            net = copy.deepcopy(net).cpu()
    elif l_type == "gpu":
        if fast:
            n_warmup = 5
            n_sample = 10
        else:
            n_warmup = 50
            n_sample = 50
    else:
        raise NotImplementedError
    images = torch.zeros(data_shape, device=get_net_device(net))

    measured_latency = {"warmup": [], "sample": []}
    net.eval()
    with torch.no_grad():
        for i in range(n_warmup):
            inner_start_time = time.time()
            net(images)
            used_time = (time.time() - inner_start_time) * 1e3  # ms
            measured_latency["warmup"].append(used_time)
            if not clean:
                print("Warmup %d: %.3f" % (i, used_time))
        outer_start_time = time.time()
        for i in range(n_sample):
            net(images)
        total_time = (time.time() - outer_start_time) * 1e3  # ms
        measured_latency["sample"].append((total_time, n_sample))
    return total_time / n_sample, measured_latency


def get_net_info(net, input_shape=(3, 32, 32), measure_latency=None, print_info=True):
    net_info = {}
    if isinstance(net, nn.DataParallel):
        net = net.module

    # parameters
    net_info["params"] = count_parameters(net) / 1e6

    # flops
    net_info["flops"] = count_net_flops(net, [1] + list(input_shape)) / 1e6

    # latencies
    latency_types = [] if measure_latency is None else measure_latency.split("#")
    for l_type in latency_types:
        latency, measured_latency = measure_net_latency(
            net, l_type, fast=False, input_shape=input_shape
        )
        net_info["%s latency" % l_type] = {"val": latency, "hist": measured_latency}

    if print_info:
        print(net)
        print("Total training params: %.2fM" % (net_info["params"]))
        print("Total FLOPs: %.2fM" % (net_info["flops"]))
        for l_type in latency_types:
            print(
                "Estimated %s latency: %.3fms"
                % (l_type, net_info["%s latency" % l_type]["val"])
            )

    return net_info


""" optimizer """


def build_optimizer(
    net_params, opt_type, opt_param, init_lr, weight_decay, no_decay_keys
):
    if no_decay_keys is not None:
        assert isinstance(net_params, list) and len(net_params) == 2
        net_params = [
            {"params": net_params[0], "weight_decay": weight_decay},
            {"params": net_params[1], "weight_decay": 0},
        ]
    else:
        net_params = [{"params": net_params, "weight_decay": weight_decay}]

    if opt_type == "sgd":
        opt_param = {} if opt_param is None else opt_param
        momentum, nesterov = opt_param.get("momentum", 0.9), opt_param.get(
            "nesterov", True
        )
        optimizer = torch.optim.SGD(
            net_params, init_lr, momentum=momentum, nesterov=nesterov
        )
    elif opt_type == "adam":
        optimizer = torch.optim.Adam(net_params, init_lr)
    else:
        raise NotImplementedError
    return optimizer


""" learning rate schedule """


def calc_learning_rate(
    epoch, init_lr, n_epochs, batch=0, nBatch=None, lr_schedule_type="cosine"
):
    if lr_schedule_type == "cosine":
        t_total = n_epochs * nBatch
        t_cur = epoch * nBatch + batch
        lr = 0.5 * init_lr * (1 + math.cos(math.pi * t_cur / t_total))
    elif lr_schedule_type is None:
        lr = init_lr
    else:
        raise ValueError("do not support: %s" % lr_schedule_type)
    return lr