ProArd / robust_loss /rslad.py
smi08's picture
Upload folder using huggingface_hub
381fcd6 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import numpy as np
# def attack_pgd(model,train_batch_data,train_batch_labels,attack_iters=10,step_size=2/255.0,epsilon=8.0/255.0):
# ce_loss = torch.nn.CrossEntropyLoss().cuda()
# train_ifgsm_data = train_batch_data.detach() + torch.zeros_like(train_batch_data).uniform_(-epsilon,epsilon)
# train_ifgsm_data = torch.clamp(train_ifgsm_data,0,1)
# for i in range(attack_iters):
# train_ifgsm_data.requires_grad_()
# logits = model(train_ifgsm_data)
# loss = ce_loss(logits,train_batch_labels.cuda())
# loss.backward()
# train_grad = train_ifgsm_data.grad.detach()
# train_ifgsm_data = train_ifgsm_data + step_size*torch.sign(train_grad)
# train_ifgsm_data = torch.clamp(train_ifgsm_data.detach(),0,1)
# train_ifgsm_pert = train_ifgsm_data - train_batch_data
# train_ifgsm_pert = torch.clamp(train_ifgsm_pert,-epsilon,epsilon)
# train_ifgsm_data = train_batch_data + train_ifgsm_pert
# train_ifgsm_data = train_ifgsm_data.detach()
# return train_ifgsm_data
def kl_loss(a,b):
loss = -a*b + torch.log(b+1e-5)*b
return loss
def rslad_inner_loss(model,
teacher_logits,
x_natural,
y,
optimizer,
step_size=0.0078,
epsilon=0.031,
perturb_steps=10,
beta=6.0):
# define KL-loss
criterion_kl = nn.KLDivLoss(size_average=False,reduce=False)
model.eval()
batch_size = len(x_natural)
# generate adversarial example
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
for _ in range(perturb_steps):
x_adv.requires_grad_()
with torch.enable_grad():
loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1),
F.softmax(teacher_logits, dim=1))
loss_kl = torch.sum(loss_kl)
grad = torch.autograd.grad(loss_kl, [x_adv])[0]
x_adv = x_adv.detach() + step_size * torch.sign(grad.detach())
x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
model.train()
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
# zero gradient
# optimizer.zero_grad()
# logits = model(x_adv)
return x_adv
def rslad_loss(teacher_model,model,x_natural,y,optimizer,step_size=0.0078,
epsilon=0.031,
perturb_steps=10,
beta=6.0):
teacher_logits = teacher_model(x_natural)
x_adv = rslad_inner_loss(model,teacher_logits,x_natural,y,optimizer,step_size,epsilon,perturb_steps)
adv_logits = model(x_adv)
model.train()
nat_logits = model(x_natural)
kl_Loss1 = kl_loss(F.log_softmax(adv_logits,dim=1),F.softmax(teacher_logits.detach(),dim=1))
kl_Loss2 = kl_loss(F.log_softmax(nat_logits,dim=1),F.softmax(teacher_logits.detach(),dim=1))
kl_Loss1 = torch.mean(kl_Loss1)
kl_Loss2 = torch.mean(kl_Loss2)
loss = 5/6.0*kl_Loss1 + 1/6.0*kl_Loss2
return loss