atodorov284 commited on
Commit
18117cd
·
1 Parent(s): 5d16f3a

Set up MLFlow. Automatic server setup at localhost 5000. Experiments for decision tree, random forest, and xgboost set up, optimized through Bayesian search.

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/MLmodel +29 -0
  2. notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/conda.yaml +15 -0
  3. notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/input_example.json +1 -0
  4. notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/model.pkl +3 -0
  5. notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/python_env.yaml +7 -0
  6. notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/requirements.txt +8 -0
  7. notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/serving_input_example.json +179 -0
  8. notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/estimator.html +415 -0
  9. notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/metric_info.json +4 -0
  10. notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/MLmodel +25 -0
  11. notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/conda.yaml +15 -0
  12. notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/model.pkl +3 -0
  13. notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/python_env.yaml +7 -0
  14. notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/requirements.txt +8 -0
  15. notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/estimator.html +415 -0
  16. notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/metric_info.json +4 -0
  17. notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/MLmodel +25 -0
  18. notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/conda.yaml +15 -0
  19. notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/model.pkl +3 -0
  20. notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/python_env.yaml +7 -0
  21. notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/requirements.txt +8 -0
  22. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.json +1 -0
  23. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.png +0 -0
  24. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/metric_info.json +4 -0
  25. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/MLmodel +25 -0
  26. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/conda.yaml +15 -0
  27. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/model.xgb +3 -0
  28. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/python_env.yaml +7 -0
  29. notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/requirements.txt +8 -0
  30. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.json +1 -0
  31. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.png +0 -0
  32. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/metric_info.json +4 -0
  33. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/MLmodel +25 -0
  34. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/conda.yaml +15 -0
  35. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/model.xgb +3 -0
  36. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/python_env.yaml +7 -0
  37. notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/requirements.txt +8 -0
  38. notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/MLmodel +29 -0
  39. notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/conda.yaml +16 -0
  40. notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/input_example.json +1 -0
  41. notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/model.pkl +3 -0
  42. notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/python_env.yaml +7 -0
  43. notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/requirements.txt +9 -0
  44. notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/serving_input_example.json +179 -0
  45. notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/MLmodel +29 -0
  46. notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/conda.yaml +16 -0
  47. notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/input_example.json +1 -0
  48. notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/model.pkl +3 -0
  49. notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/python_env.yaml +7 -0
  50. notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/requirements.txt +9 -0
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/MLmodel ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_model
2
+ flavors:
3
+ python_function:
4
+ env:
5
+ conda: conda.yaml
6
+ virtualenv: python_env.yaml
7
+ loader_module: mlflow.sklearn
8
+ model_path: model.pkl
9
+ predict_fn: predict
10
+ python_version: 3.11.0
11
+ sklearn:
12
+ code: null
13
+ pickled_model: model.pkl
14
+ serialization_format: cloudpickle
15
+ sklearn_version: 1.5.2
16
+ mlflow_version: 2.16.2
17
+ model_size_bytes: 27152183
18
+ model_uuid: 5040f599914b4f5888739b95285524f2
19
+ run_id: 6bfd7856e3624d38aadfd33e3fc79343
20
+ saved_input_example_info:
21
+ artifact_path: input_example.json
22
+ serving_input_path: serving_input_example.json
23
+ type: ndarray
24
+ signature:
25
+ inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
26
+ outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1,
27
+ 6]}}]'
28
+ params: null
29
+ utc_time_created: '2024-09-29 14:04:14.687971'
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/conda.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.11.0
5
+ - pip<=24.2
6
+ - pip:
7
+ - mlflow==2.16.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.2
10
+ - pandas==2.2.2
11
+ - psutil==5.9.4
12
+ - scikit-learn==1.5.2
13
+ - scipy==1.11.4
14
+ - typing==3.7.4.3
15
+ name: mlflow-env
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/input_example.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [[0.1383647798742138, 0.074074074074074, 0.3113207547169811, 0.064516129032258, 0.6015831134564643, 0.6025236593059935, 0.5384615384615385, 0.5291806958473626, 0.0245398773006134, 0.1299638989169675, 0.0472616068946344, 0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655], [0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941], [0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949], [0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613], [0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613, 0.2578616352201258, 0.0493827160493827, 0.1981132075471698, 0.064516129032258, 0.6912928759894458, 0.8675078864353312, 0.265934065934066, 0.5830527497194165, 0.0224948875255623, 0.1299638989169675, 0.9043647484014457]]
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abe041262c93657c930e8324ddd788dbdba25acb647e245a71ffd18ce004cae8
3
+ size 27144425
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.11.0
2
+ build_dependencies:
3
+ - pip==24.2
4
+ - setuptools==65.5.0
5
+ - wheel==0.41.2
6
+ dependencies:
7
+ - -r requirements.txt
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.16.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.2
4
+ pandas==2.2.2
5
+ psutil==5.9.4
6
+ scikit-learn==1.5.2
7
+ scipy==1.11.4
8
+ typing==3.7.4.3
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/serving_input_example.json ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "inputs": [
3
+ [
4
+ 0.1383647798742138,
5
+ 0.074074074074074,
6
+ 0.3113207547169811,
7
+ 0.064516129032258,
8
+ 0.6015831134564643,
9
+ 0.6025236593059935,
10
+ 0.5384615384615385,
11
+ 0.5291806958473626,
12
+ 0.0245398773006134,
13
+ 0.1299638989169675,
14
+ 0.0472616068946344,
15
+ 0.1823899371069182,
16
+ 0.1604938271604938,
17
+ 0.1698113207547169,
18
+ 0.2258064516129032,
19
+ 0.6332453825857519,
20
+ 0.5536277602523658,
21
+ 0.7318681318681319,
22
+ 0.7530864197530865,
23
+ 0.0,
24
+ 0.0649819494584837,
25
+ 0.0005560189046427,
26
+ 0.3144654088050315,
27
+ 0.1358024691358024,
28
+ 0.4056603773584905,
29
+ 0.0967741935483871,
30
+ 0.5936675461741424,
31
+ 0.8028391167192428,
32
+ 0.1912087912087912,
33
+ 0.6315937149270483,
34
+ 0.0265848670756646,
35
+ 0.259927797833935,
36
+ 0.5535168195718655
37
+ ],
38
+ [
39
+ 0.1823899371069182,
40
+ 0.1604938271604938,
41
+ 0.1698113207547169,
42
+ 0.2258064516129032,
43
+ 0.6332453825857519,
44
+ 0.5536277602523658,
45
+ 0.7318681318681319,
46
+ 0.7530864197530865,
47
+ 0.0,
48
+ 0.0649819494584837,
49
+ 0.0005560189046427,
50
+ 0.3144654088050315,
51
+ 0.1358024691358024,
52
+ 0.4056603773584905,
53
+ 0.0967741935483871,
54
+ 0.5936675461741424,
55
+ 0.8028391167192428,
56
+ 0.1912087912087912,
57
+ 0.6315937149270483,
58
+ 0.0265848670756646,
59
+ 0.259927797833935,
60
+ 0.5535168195718655,
61
+ 0.3207547169811321,
62
+ 0.2345679012345679,
63
+ 0.3584905660377358,
64
+ 0.032258064516129,
65
+ 0.7308707124010553,
66
+ 0.6640378548895898,
67
+ 0.2483516483516483,
68
+ 0.7463524130190798,
69
+ 0.0040899795501022,
70
+ 0.1299638989169675,
71
+ 0.2730052821795941
72
+ ],
73
+ [
74
+ 0.3144654088050315,
75
+ 0.1358024691358024,
76
+ 0.4056603773584905,
77
+ 0.0967741935483871,
78
+ 0.5936675461741424,
79
+ 0.8028391167192428,
80
+ 0.1912087912087912,
81
+ 0.6315937149270483,
82
+ 0.0265848670756646,
83
+ 0.259927797833935,
84
+ 0.5535168195718655,
85
+ 0.3207547169811321,
86
+ 0.2345679012345679,
87
+ 0.3584905660377358,
88
+ 0.032258064516129,
89
+ 0.7308707124010553,
90
+ 0.6640378548895898,
91
+ 0.2483516483516483,
92
+ 0.7463524130190798,
93
+ 0.0040899795501022,
94
+ 0.1299638989169675,
95
+ 0.2730052821795941,
96
+ 0.3018867924528302,
97
+ 0.1234567901234567,
98
+ 0.2547169811320754,
99
+ 0.1290322580645161,
100
+ 0.7678100263852242,
101
+ 0.6529968454258674,
102
+ 0.276923076923077,
103
+ 0.5120650953984288,
104
+ 0.130879345603272,
105
+ 0.3898916967509025,
106
+ 0.2288017792604949
107
+ ],
108
+ [
109
+ 0.3207547169811321,
110
+ 0.2345679012345679,
111
+ 0.3584905660377358,
112
+ 0.032258064516129,
113
+ 0.7308707124010553,
114
+ 0.6640378548895898,
115
+ 0.2483516483516483,
116
+ 0.7463524130190798,
117
+ 0.0040899795501022,
118
+ 0.1299638989169675,
119
+ 0.2730052821795941,
120
+ 0.3018867924528302,
121
+ 0.1234567901234567,
122
+ 0.2547169811320754,
123
+ 0.1290322580645161,
124
+ 0.7678100263852242,
125
+ 0.6529968454258674,
126
+ 0.276923076923077,
127
+ 0.5120650953984288,
128
+ 0.130879345603272,
129
+ 0.3898916967509025,
130
+ 0.2288017792604949,
131
+ 0.289308176100629,
132
+ 0.0987654320987654,
133
+ 0.1792452830188679,
134
+ 0.0967741935483871,
135
+ 0.7546174142480211,
136
+ 0.7807570977917981,
137
+ 0.2395604395604395,
138
+ 0.457351290684624,
139
+ 0.0020449897750511,
140
+ 0.0649819494584837,
141
+ 0.0567139282735613
142
+ ],
143
+ [
144
+ 0.3018867924528302,
145
+ 0.1234567901234567,
146
+ 0.2547169811320754,
147
+ 0.1290322580645161,
148
+ 0.7678100263852242,
149
+ 0.6529968454258674,
150
+ 0.276923076923077,
151
+ 0.5120650953984288,
152
+ 0.130879345603272,
153
+ 0.3898916967509025,
154
+ 0.2288017792604949,
155
+ 0.289308176100629,
156
+ 0.0987654320987654,
157
+ 0.1792452830188679,
158
+ 0.0967741935483871,
159
+ 0.7546174142480211,
160
+ 0.7807570977917981,
161
+ 0.2395604395604395,
162
+ 0.457351290684624,
163
+ 0.0020449897750511,
164
+ 0.0649819494584837,
165
+ 0.0567139282735613,
166
+ 0.2578616352201258,
167
+ 0.0493827160493827,
168
+ 0.1981132075471698,
169
+ 0.064516129032258,
170
+ 0.6912928759894458,
171
+ 0.8675078864353312,
172
+ 0.265934065934066,
173
+ 0.5830527497194165,
174
+ 0.0224948875255623,
175
+ 0.1299638989169675,
176
+ 0.9043647484014457
177
+ ]
178
+ ]
179
+ }
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/estimator.html ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ <!DOCTYPE html>
3
+ <html lang="en">
4
+ <head>
5
+ <meta charset="UTF-8"/>
6
+ </head>
7
+ <body>
8
+ <style>#sk-container-id-5 {
9
+ /* Definition of color scheme common for light and dark mode */
10
+ --sklearn-color-text: black;
11
+ --sklearn-color-line: gray;
12
+ /* Definition of color scheme for unfitted estimators */
13
+ --sklearn-color-unfitted-level-0: #fff5e6;
14
+ --sklearn-color-unfitted-level-1: #f6e4d2;
15
+ --sklearn-color-unfitted-level-2: #ffe0b3;
16
+ --sklearn-color-unfitted-level-3: chocolate;
17
+ /* Definition of color scheme for fitted estimators */
18
+ --sklearn-color-fitted-level-0: #f0f8ff;
19
+ --sklearn-color-fitted-level-1: #d4ebff;
20
+ --sklearn-color-fitted-level-2: #b3dbfd;
21
+ --sklearn-color-fitted-level-3: cornflowerblue;
22
+
23
+ /* Specific color for light theme */
24
+ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
25
+ --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
26
+ --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
27
+ --sklearn-color-icon: #696969;
28
+
29
+ @media (prefers-color-scheme: dark) {
30
+ /* Redefinition of color scheme for dark theme */
31
+ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
32
+ --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
33
+ --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
34
+ --sklearn-color-icon: #878787;
35
+ }
36
+ }
37
+
38
+ #sk-container-id-5 {
39
+ color: var(--sklearn-color-text);
40
+ }
41
+
42
+ #sk-container-id-5 pre {
43
+ padding: 0;
44
+ }
45
+
46
+ #sk-container-id-5 input.sk-hidden--visually {
47
+ border: 0;
48
+ clip: rect(1px 1px 1px 1px);
49
+ clip: rect(1px, 1px, 1px, 1px);
50
+ height: 1px;
51
+ margin: -1px;
52
+ overflow: hidden;
53
+ padding: 0;
54
+ position: absolute;
55
+ width: 1px;
56
+ }
57
+
58
+ #sk-container-id-5 div.sk-dashed-wrapped {
59
+ border: 1px dashed var(--sklearn-color-line);
60
+ margin: 0 0.4em 0.5em 0.4em;
61
+ box-sizing: border-box;
62
+ padding-bottom: 0.4em;
63
+ background-color: var(--sklearn-color-background);
64
+ }
65
+
66
+ #sk-container-id-5 div.sk-container {
67
+ /* jupyter's `normalize.less` sets `[hidden] { display: none; }`
68
+ but bootstrap.min.css set `[hidden] { display: none !important; }`
69
+ so we also need the `!important` here to be able to override the
70
+ default hidden behavior on the sphinx rendered scikit-learn.org.
71
+ See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
72
+ display: inline-block !important;
73
+ position: relative;
74
+ }
75
+
76
+ #sk-container-id-5 div.sk-text-repr-fallback {
77
+ display: none;
78
+ }
79
+
80
+ div.sk-parallel-item,
81
+ div.sk-serial,
82
+ div.sk-item {
83
+ /* draw centered vertical line to link estimators */
84
+ background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
85
+ background-size: 2px 100%;
86
+ background-repeat: no-repeat;
87
+ background-position: center center;
88
+ }
89
+
90
+ /* Parallel-specific style estimator block */
91
+
92
+ #sk-container-id-5 div.sk-parallel-item::after {
93
+ content: "";
94
+ width: 100%;
95
+ border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
96
+ flex-grow: 1;
97
+ }
98
+
99
+ #sk-container-id-5 div.sk-parallel {
100
+ display: flex;
101
+ align-items: stretch;
102
+ justify-content: center;
103
+ background-color: var(--sklearn-color-background);
104
+ position: relative;
105
+ }
106
+
107
+ #sk-container-id-5 div.sk-parallel-item {
108
+ display: flex;
109
+ flex-direction: column;
110
+ }
111
+
112
+ #sk-container-id-5 div.sk-parallel-item:first-child::after {
113
+ align-self: flex-end;
114
+ width: 50%;
115
+ }
116
+
117
+ #sk-container-id-5 div.sk-parallel-item:last-child::after {
118
+ align-self: flex-start;
119
+ width: 50%;
120
+ }
121
+
122
+ #sk-container-id-5 div.sk-parallel-item:only-child::after {
123
+ width: 0;
124
+ }
125
+
126
+ /* Serial-specific style estimator block */
127
+
128
+ #sk-container-id-5 div.sk-serial {
129
+ display: flex;
130
+ flex-direction: column;
131
+ align-items: center;
132
+ background-color: var(--sklearn-color-background);
133
+ padding-right: 1em;
134
+ padding-left: 1em;
135
+ }
136
+
137
+
138
+ /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
139
+ clickable and can be expanded/collapsed.
140
+ - Pipeline and ColumnTransformer use this feature and define the default style
141
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
142
+ */
143
+
144
+ /* Pipeline and ColumnTransformer style (default) */
145
+
146
+ #sk-container-id-5 div.sk-toggleable {
147
+ /* Default theme specific background. It is overwritten whether we have a
148
+ specific estimator or a Pipeline/ColumnTransformer */
149
+ background-color: var(--sklearn-color-background);
150
+ }
151
+
152
+ /* Toggleable label */
153
+ #sk-container-id-5 label.sk-toggleable__label {
154
+ cursor: pointer;
155
+ display: block;
156
+ width: 100%;
157
+ margin-bottom: 0;
158
+ padding: 0.5em;
159
+ box-sizing: border-box;
160
+ text-align: center;
161
+ }
162
+
163
+ #sk-container-id-5 label.sk-toggleable__label-arrow:before {
164
+ /* Arrow on the left of the label */
165
+ content: "▸";
166
+ float: left;
167
+ margin-right: 0.25em;
168
+ color: var(--sklearn-color-icon);
169
+ }
170
+
171
+ #sk-container-id-5 label.sk-toggleable__label-arrow:hover:before {
172
+ color: var(--sklearn-color-text);
173
+ }
174
+
175
+ /* Toggleable content - dropdown */
176
+
177
+ #sk-container-id-5 div.sk-toggleable__content {
178
+ max-height: 0;
179
+ max-width: 0;
180
+ overflow: hidden;
181
+ text-align: left;
182
+ /* unfitted */
183
+ background-color: var(--sklearn-color-unfitted-level-0);
184
+ }
185
+
186
+ #sk-container-id-5 div.sk-toggleable__content.fitted {
187
+ /* fitted */
188
+ background-color: var(--sklearn-color-fitted-level-0);
189
+ }
190
+
191
+ #sk-container-id-5 div.sk-toggleable__content pre {
192
+ margin: 0.2em;
193
+ border-radius: 0.25em;
194
+ color: var(--sklearn-color-text);
195
+ /* unfitted */
196
+ background-color: var(--sklearn-color-unfitted-level-0);
197
+ }
198
+
199
+ #sk-container-id-5 div.sk-toggleable__content.fitted pre {
200
+ /* unfitted */
201
+ background-color: var(--sklearn-color-fitted-level-0);
202
+ }
203
+
204
+ #sk-container-id-5 input.sk-toggleable__control:checked~div.sk-toggleable__content {
205
+ /* Expand drop-down */
206
+ max-height: 200px;
207
+ max-width: 100%;
208
+ overflow: auto;
209
+ }
210
+
211
+ #sk-container-id-5 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
212
+ content: "▾";
213
+ }
214
+
215
+ /* Pipeline/ColumnTransformer-specific style */
216
+
217
+ #sk-container-id-5 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
218
+ color: var(--sklearn-color-text);
219
+ background-color: var(--sklearn-color-unfitted-level-2);
220
+ }
221
+
222
+ #sk-container-id-5 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
223
+ background-color: var(--sklearn-color-fitted-level-2);
224
+ }
225
+
226
+ /* Estimator-specific style */
227
+
228
+ /* Colorize estimator box */
229
+ #sk-container-id-5 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
230
+ /* unfitted */
231
+ background-color: var(--sklearn-color-unfitted-level-2);
232
+ }
233
+
234
+ #sk-container-id-5 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
235
+ /* fitted */
236
+ background-color: var(--sklearn-color-fitted-level-2);
237
+ }
238
+
239
+ #sk-container-id-5 div.sk-label label.sk-toggleable__label,
240
+ #sk-container-id-5 div.sk-label label {
241
+ /* The background is the default theme color */
242
+ color: var(--sklearn-color-text-on-default-background);
243
+ }
244
+
245
+ /* On hover, darken the color of the background */
246
+ #sk-container-id-5 div.sk-label:hover label.sk-toggleable__label {
247
+ color: var(--sklearn-color-text);
248
+ background-color: var(--sklearn-color-unfitted-level-2);
249
+ }
250
+
251
+ /* Label box, darken color on hover, fitted */
252
+ #sk-container-id-5 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
253
+ color: var(--sklearn-color-text);
254
+ background-color: var(--sklearn-color-fitted-level-2);
255
+ }
256
+
257
+ /* Estimator label */
258
+
259
+ #sk-container-id-5 div.sk-label label {
260
+ font-family: monospace;
261
+ font-weight: bold;
262
+ display: inline-block;
263
+ line-height: 1.2em;
264
+ }
265
+
266
+ #sk-container-id-5 div.sk-label-container {
267
+ text-align: center;
268
+ }
269
+
270
+ /* Estimator-specific */
271
+ #sk-container-id-5 div.sk-estimator {
272
+ font-family: monospace;
273
+ border: 1px dotted var(--sklearn-color-border-box);
274
+ border-radius: 0.25em;
275
+ box-sizing: border-box;
276
+ margin-bottom: 0.5em;
277
+ /* unfitted */
278
+ background-color: var(--sklearn-color-unfitted-level-0);
279
+ }
280
+
281
+ #sk-container-id-5 div.sk-estimator.fitted {
282
+ /* fitted */
283
+ background-color: var(--sklearn-color-fitted-level-0);
284
+ }
285
+
286
+ /* on hover */
287
+ #sk-container-id-5 div.sk-estimator:hover {
288
+ /* unfitted */
289
+ background-color: var(--sklearn-color-unfitted-level-2);
290
+ }
291
+
292
+ #sk-container-id-5 div.sk-estimator.fitted:hover {
293
+ /* fitted */
294
+ background-color: var(--sklearn-color-fitted-level-2);
295
+ }
296
+
297
+ /* Specification for estimator info (e.g. "i" and "?") */
298
+
299
+ /* Common style for "i" and "?" */
300
+
301
+ .sk-estimator-doc-link,
302
+ a:link.sk-estimator-doc-link,
303
+ a:visited.sk-estimator-doc-link {
304
+ float: right;
305
+ font-size: smaller;
306
+ line-height: 1em;
307
+ font-family: monospace;
308
+ background-color: var(--sklearn-color-background);
309
+ border-radius: 1em;
310
+ height: 1em;
311
+ width: 1em;
312
+ text-decoration: none !important;
313
+ margin-left: 1ex;
314
+ /* unfitted */
315
+ border: var(--sklearn-color-unfitted-level-1) 1pt solid;
316
+ color: var(--sklearn-color-unfitted-level-1);
317
+ }
318
+
319
+ .sk-estimator-doc-link.fitted,
320
+ a:link.sk-estimator-doc-link.fitted,
321
+ a:visited.sk-estimator-doc-link.fitted {
322
+ /* fitted */
323
+ border: var(--sklearn-color-fitted-level-1) 1pt solid;
324
+ color: var(--sklearn-color-fitted-level-1);
325
+ }
326
+
327
+ /* On hover */
328
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
329
+ .sk-estimator-doc-link:hover,
330
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
331
+ .sk-estimator-doc-link:hover {
332
+ /* unfitted */
333
+ background-color: var(--sklearn-color-unfitted-level-3);
334
+ color: var(--sklearn-color-background);
335
+ text-decoration: none;
336
+ }
337
+
338
+ div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
339
+ .sk-estimator-doc-link.fitted:hover,
340
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
341
+ .sk-estimator-doc-link.fitted:hover {
342
+ /* fitted */
343
+ background-color: var(--sklearn-color-fitted-level-3);
344
+ color: var(--sklearn-color-background);
345
+ text-decoration: none;
346
+ }
347
+
348
+ /* Span, style for the box shown on hovering the info icon */
349
+ .sk-estimator-doc-link span {
350
+ display: none;
351
+ z-index: 9999;
352
+ position: relative;
353
+ font-weight: normal;
354
+ right: .2ex;
355
+ padding: .5ex;
356
+ margin: .5ex;
357
+ width: min-content;
358
+ min-width: 20ex;
359
+ max-width: 50ex;
360
+ color: var(--sklearn-color-text);
361
+ box-shadow: 2pt 2pt 4pt #999;
362
+ /* unfitted */
363
+ background: var(--sklearn-color-unfitted-level-0);
364
+ border: .5pt solid var(--sklearn-color-unfitted-level-3);
365
+ }
366
+
367
+ .sk-estimator-doc-link.fitted span {
368
+ /* fitted */
369
+ background: var(--sklearn-color-fitted-level-0);
370
+ border: var(--sklearn-color-fitted-level-3);
371
+ }
372
+
373
+ .sk-estimator-doc-link:hover span {
374
+ display: block;
375
+ }
376
+
377
+ /* "?"-specific style due to the `<a>` HTML tag */
378
+
379
+ #sk-container-id-5 a.estimator_doc_link {
380
+ float: right;
381
+ font-size: 1rem;
382
+ line-height: 1em;
383
+ font-family: monospace;
384
+ background-color: var(--sklearn-color-background);
385
+ border-radius: 1rem;
386
+ height: 1rem;
387
+ width: 1rem;
388
+ text-decoration: none;
389
+ /* unfitted */
390
+ color: var(--sklearn-color-unfitted-level-1);
391
+ border: var(--sklearn-color-unfitted-level-1) 1pt solid;
392
+ }
393
+
394
+ #sk-container-id-5 a.estimator_doc_link.fitted {
395
+ /* fitted */
396
+ border: var(--sklearn-color-fitted-level-1) 1pt solid;
397
+ color: var(--sklearn-color-fitted-level-1);
398
+ }
399
+
400
+ /* On hover */
401
+ #sk-container-id-5 a.estimator_doc_link:hover {
402
+ /* unfitted */
403
+ background-color: var(--sklearn-color-unfitted-level-3);
404
+ color: var(--sklearn-color-background);
405
+ text-decoration: none;
406
+ }
407
+
408
+ #sk-container-id-5 a.estimator_doc_link.fitted:hover {
409
+ /* fitted */
410
+ background-color: var(--sklearn-color-fitted-level-3);
411
+ }
412
+ </style><div id="sk-container-id-5" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestRegressor(max_depth=17)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" checked><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;RandomForestRegressor<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestRegressor.html">?<span>Documentation for RandomForestRegressor</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>RandomForestRegressor(max_depth=17)</pre></div> </div></div></div></div>
413
+ </body>
414
+ </html>
415
+
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/metric_info.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
3
+ "root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
4
+ }
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/MLmodel ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: model
2
+ flavors:
3
+ python_function:
4
+ env:
5
+ conda: conda.yaml
6
+ virtualenv: python_env.yaml
7
+ loader_module: mlflow.sklearn
8
+ model_path: model.pkl
9
+ predict_fn: predict
10
+ python_version: 3.11.0
11
+ sklearn:
12
+ code: null
13
+ pickled_model: model.pkl
14
+ serialization_format: cloudpickle
15
+ sklearn_version: 1.5.2
16
+ mlflow_version: 2.16.2
17
+ model_size_bytes: 31005013
18
+ model_uuid: 14b114586bf9463db4c497b4508d35ab
19
+ run_id: d6de58a8b1b9445a8da3f306598e1754
20
+ signature:
21
+ inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
22
+ outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1,
23
+ 6]}}]'
24
+ params: null
25
+ utc_time_created: '2024-09-29 16:02:11.207015'
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/conda.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.11.0
5
+ - pip<=24.2
6
+ - pip:
7
+ - mlflow==2.16.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.2
10
+ - pandas==2.2.2
11
+ - psutil==5.9.4
12
+ - scikit-learn==1.5.2
13
+ - scipy==1.11.4
14
+ - typing==3.7.4.3
15
+ name: mlflow-env
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1092fd6d474fafb4da32f866f250d60516be40b9d0ea045b3b46670cf1b6a27
3
+ size 31005013
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.11.0
2
+ build_dependencies:
3
+ - pip==24.2
4
+ - setuptools==65.5.0
5
+ - wheel==0.41.2
6
+ dependencies:
7
+ - -r requirements.txt
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.16.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.2
4
+ pandas==2.2.2
5
+ psutil==5.9.4
6
+ scikit-learn==1.5.2
7
+ scipy==1.11.4
8
+ typing==3.7.4.3
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/estimator.html ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ <!DOCTYPE html>
3
+ <html lang="en">
4
+ <head>
5
+ <meta charset="UTF-8"/>
6
+ </head>
7
+ <body>
8
+ <style>#sk-container-id-179 {
9
+ /* Definition of color scheme common for light and dark mode */
10
+ --sklearn-color-text: black;
11
+ --sklearn-color-line: gray;
12
+ /* Definition of color scheme for unfitted estimators */
13
+ --sklearn-color-unfitted-level-0: #fff5e6;
14
+ --sklearn-color-unfitted-level-1: #f6e4d2;
15
+ --sklearn-color-unfitted-level-2: #ffe0b3;
16
+ --sklearn-color-unfitted-level-3: chocolate;
17
+ /* Definition of color scheme for fitted estimators */
18
+ --sklearn-color-fitted-level-0: #f0f8ff;
19
+ --sklearn-color-fitted-level-1: #d4ebff;
20
+ --sklearn-color-fitted-level-2: #b3dbfd;
21
+ --sklearn-color-fitted-level-3: cornflowerblue;
22
+
23
+ /* Specific color for light theme */
24
+ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
25
+ --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
26
+ --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
27
+ --sklearn-color-icon: #696969;
28
+
29
+ @media (prefers-color-scheme: dark) {
30
+ /* Redefinition of color scheme for dark theme */
31
+ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
32
+ --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
33
+ --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
34
+ --sklearn-color-icon: #878787;
35
+ }
36
+ }
37
+
38
+ #sk-container-id-179 {
39
+ color: var(--sklearn-color-text);
40
+ }
41
+
42
+ #sk-container-id-179 pre {
43
+ padding: 0;
44
+ }
45
+
46
+ #sk-container-id-179 input.sk-hidden--visually {
47
+ border: 0;
48
+ clip: rect(1px 1px 1px 1px);
49
+ clip: rect(1px, 1px, 1px, 1px);
50
+ height: 1px;
51
+ margin: -1px;
52
+ overflow: hidden;
53
+ padding: 0;
54
+ position: absolute;
55
+ width: 1px;
56
+ }
57
+
58
+ #sk-container-id-179 div.sk-dashed-wrapped {
59
+ border: 1px dashed var(--sklearn-color-line);
60
+ margin: 0 0.4em 0.5em 0.4em;
61
+ box-sizing: border-box;
62
+ padding-bottom: 0.4em;
63
+ background-color: var(--sklearn-color-background);
64
+ }
65
+
66
+ #sk-container-id-179 div.sk-container {
67
+ /* jupyter's `normalize.less` sets `[hidden] { display: none; }`
68
+ but bootstrap.min.css set `[hidden] { display: none !important; }`
69
+ so we also need the `!important` here to be able to override the
70
+ default hidden behavior on the sphinx rendered scikit-learn.org.
71
+ See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
72
+ display: inline-block !important;
73
+ position: relative;
74
+ }
75
+
76
+ #sk-container-id-179 div.sk-text-repr-fallback {
77
+ display: none;
78
+ }
79
+
80
+ div.sk-parallel-item,
81
+ div.sk-serial,
82
+ div.sk-item {
83
+ /* draw centered vertical line to link estimators */
84
+ background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
85
+ background-size: 2px 100%;
86
+ background-repeat: no-repeat;
87
+ background-position: center center;
88
+ }
89
+
90
+ /* Parallel-specific style estimator block */
91
+
92
+ #sk-container-id-179 div.sk-parallel-item::after {
93
+ content: "";
94
+ width: 100%;
95
+ border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
96
+ flex-grow: 1;
97
+ }
98
+
99
+ #sk-container-id-179 div.sk-parallel {
100
+ display: flex;
101
+ align-items: stretch;
102
+ justify-content: center;
103
+ background-color: var(--sklearn-color-background);
104
+ position: relative;
105
+ }
106
+
107
+ #sk-container-id-179 div.sk-parallel-item {
108
+ display: flex;
109
+ flex-direction: column;
110
+ }
111
+
112
+ #sk-container-id-179 div.sk-parallel-item:first-child::after {
113
+ align-self: flex-end;
114
+ width: 50%;
115
+ }
116
+
117
+ #sk-container-id-179 div.sk-parallel-item:last-child::after {
118
+ align-self: flex-start;
119
+ width: 50%;
120
+ }
121
+
122
+ #sk-container-id-179 div.sk-parallel-item:only-child::after {
123
+ width: 0;
124
+ }
125
+
126
+ /* Serial-specific style estimator block */
127
+
128
+ #sk-container-id-179 div.sk-serial {
129
+ display: flex;
130
+ flex-direction: column;
131
+ align-items: center;
132
+ background-color: var(--sklearn-color-background);
133
+ padding-right: 1em;
134
+ padding-left: 1em;
135
+ }
136
+
137
+
138
+ /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
139
+ clickable and can be expanded/collapsed.
140
+ - Pipeline and ColumnTransformer use this feature and define the default style
141
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
142
+ */
143
+
144
+ /* Pipeline and ColumnTransformer style (default) */
145
+
146
+ #sk-container-id-179 div.sk-toggleable {
147
+ /* Default theme specific background. It is overwritten whether we have a
148
+ specific estimator or a Pipeline/ColumnTransformer */
149
+ background-color: var(--sklearn-color-background);
150
+ }
151
+
152
+ /* Toggleable label */
153
+ #sk-container-id-179 label.sk-toggleable__label {
154
+ cursor: pointer;
155
+ display: block;
156
+ width: 100%;
157
+ margin-bottom: 0;
158
+ padding: 0.5em;
159
+ box-sizing: border-box;
160
+ text-align: center;
161
+ }
162
+
163
+ #sk-container-id-179 label.sk-toggleable__label-arrow:before {
164
+ /* Arrow on the left of the label */
165
+ content: "▸";
166
+ float: left;
167
+ margin-right: 0.25em;
168
+ color: var(--sklearn-color-icon);
169
+ }
170
+
171
+ #sk-container-id-179 label.sk-toggleable__label-arrow:hover:before {
172
+ color: var(--sklearn-color-text);
173
+ }
174
+
175
+ /* Toggleable content - dropdown */
176
+
177
+ #sk-container-id-179 div.sk-toggleable__content {
178
+ max-height: 0;
179
+ max-width: 0;
180
+ overflow: hidden;
181
+ text-align: left;
182
+ /* unfitted */
183
+ background-color: var(--sklearn-color-unfitted-level-0);
184
+ }
185
+
186
+ #sk-container-id-179 div.sk-toggleable__content.fitted {
187
+ /* fitted */
188
+ background-color: var(--sklearn-color-fitted-level-0);
189
+ }
190
+
191
+ #sk-container-id-179 div.sk-toggleable__content pre {
192
+ margin: 0.2em;
193
+ border-radius: 0.25em;
194
+ color: var(--sklearn-color-text);
195
+ /* unfitted */
196
+ background-color: var(--sklearn-color-unfitted-level-0);
197
+ }
198
+
199
+ #sk-container-id-179 div.sk-toggleable__content.fitted pre {
200
+ /* unfitted */
201
+ background-color: var(--sklearn-color-fitted-level-0);
202
+ }
203
+
204
+ #sk-container-id-179 input.sk-toggleable__control:checked~div.sk-toggleable__content {
205
+ /* Expand drop-down */
206
+ max-height: 200px;
207
+ max-width: 100%;
208
+ overflow: auto;
209
+ }
210
+
211
+ #sk-container-id-179 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
212
+ content: "▾";
213
+ }
214
+
215
+ /* Pipeline/ColumnTransformer-specific style */
216
+
217
+ #sk-container-id-179 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
218
+ color: var(--sklearn-color-text);
219
+ background-color: var(--sklearn-color-unfitted-level-2);
220
+ }
221
+
222
+ #sk-container-id-179 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
223
+ background-color: var(--sklearn-color-fitted-level-2);
224
+ }
225
+
226
+ /* Estimator-specific style */
227
+
228
+ /* Colorize estimator box */
229
+ #sk-container-id-179 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
230
+ /* unfitted */
231
+ background-color: var(--sklearn-color-unfitted-level-2);
232
+ }
233
+
234
+ #sk-container-id-179 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
235
+ /* fitted */
236
+ background-color: var(--sklearn-color-fitted-level-2);
237
+ }
238
+
239
+ #sk-container-id-179 div.sk-label label.sk-toggleable__label,
240
+ #sk-container-id-179 div.sk-label label {
241
+ /* The background is the default theme color */
242
+ color: var(--sklearn-color-text-on-default-background);
243
+ }
244
+
245
+ /* On hover, darken the color of the background */
246
+ #sk-container-id-179 div.sk-label:hover label.sk-toggleable__label {
247
+ color: var(--sklearn-color-text);
248
+ background-color: var(--sklearn-color-unfitted-level-2);
249
+ }
250
+
251
+ /* Label box, darken color on hover, fitted */
252
+ #sk-container-id-179 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
253
+ color: var(--sklearn-color-text);
254
+ background-color: var(--sklearn-color-fitted-level-2);
255
+ }
256
+
257
+ /* Estimator label */
258
+
259
+ #sk-container-id-179 div.sk-label label {
260
+ font-family: monospace;
261
+ font-weight: bold;
262
+ display: inline-block;
263
+ line-height: 1.2em;
264
+ }
265
+
266
+ #sk-container-id-179 div.sk-label-container {
267
+ text-align: center;
268
+ }
269
+
270
+ /* Estimator-specific */
271
+ #sk-container-id-179 div.sk-estimator {
272
+ font-family: monospace;
273
+ border: 1px dotted var(--sklearn-color-border-box);
274
+ border-radius: 0.25em;
275
+ box-sizing: border-box;
276
+ margin-bottom: 0.5em;
277
+ /* unfitted */
278
+ background-color: var(--sklearn-color-unfitted-level-0);
279
+ }
280
+
281
+ #sk-container-id-179 div.sk-estimator.fitted {
282
+ /* fitted */
283
+ background-color: var(--sklearn-color-fitted-level-0);
284
+ }
285
+
286
+ /* on hover */
287
+ #sk-container-id-179 div.sk-estimator:hover {
288
+ /* unfitted */
289
+ background-color: var(--sklearn-color-unfitted-level-2);
290
+ }
291
+
292
+ #sk-container-id-179 div.sk-estimator.fitted:hover {
293
+ /* fitted */
294
+ background-color: var(--sklearn-color-fitted-level-2);
295
+ }
296
+
297
+ /* Specification for estimator info (e.g. "i" and "?") */
298
+
299
+ /* Common style for "i" and "?" */
300
+
301
+ .sk-estimator-doc-link,
302
+ a:link.sk-estimator-doc-link,
303
+ a:visited.sk-estimator-doc-link {
304
+ float: right;
305
+ font-size: smaller;
306
+ line-height: 1em;
307
+ font-family: monospace;
308
+ background-color: var(--sklearn-color-background);
309
+ border-radius: 1em;
310
+ height: 1em;
311
+ width: 1em;
312
+ text-decoration: none !important;
313
+ margin-left: 1ex;
314
+ /* unfitted */
315
+ border: var(--sklearn-color-unfitted-level-1) 1pt solid;
316
+ color: var(--sklearn-color-unfitted-level-1);
317
+ }
318
+
319
+ .sk-estimator-doc-link.fitted,
320
+ a:link.sk-estimator-doc-link.fitted,
321
+ a:visited.sk-estimator-doc-link.fitted {
322
+ /* fitted */
323
+ border: var(--sklearn-color-fitted-level-1) 1pt solid;
324
+ color: var(--sklearn-color-fitted-level-1);
325
+ }
326
+
327
+ /* On hover */
328
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
329
+ .sk-estimator-doc-link:hover,
330
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
331
+ .sk-estimator-doc-link:hover {
332
+ /* unfitted */
333
+ background-color: var(--sklearn-color-unfitted-level-3);
334
+ color: var(--sklearn-color-background);
335
+ text-decoration: none;
336
+ }
337
+
338
+ div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
339
+ .sk-estimator-doc-link.fitted:hover,
340
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
341
+ .sk-estimator-doc-link.fitted:hover {
342
+ /* fitted */
343
+ background-color: var(--sklearn-color-fitted-level-3);
344
+ color: var(--sklearn-color-background);
345
+ text-decoration: none;
346
+ }
347
+
348
+ /* Span, style for the box shown on hovering the info icon */
349
+ .sk-estimator-doc-link span {
350
+ display: none;
351
+ z-index: 9999;
352
+ position: relative;
353
+ font-weight: normal;
354
+ right: .2ex;
355
+ padding: .5ex;
356
+ margin: .5ex;
357
+ width: min-content;
358
+ min-width: 20ex;
359
+ max-width: 50ex;
360
+ color: var(--sklearn-color-text);
361
+ box-shadow: 2pt 2pt 4pt #999;
362
+ /* unfitted */
363
+ background: var(--sklearn-color-unfitted-level-0);
364
+ border: .5pt solid var(--sklearn-color-unfitted-level-3);
365
+ }
366
+
367
+ .sk-estimator-doc-link.fitted span {
368
+ /* fitted */
369
+ background: var(--sklearn-color-fitted-level-0);
370
+ border: var(--sklearn-color-fitted-level-3);
371
+ }
372
+
373
+ .sk-estimator-doc-link:hover span {
374
+ display: block;
375
+ }
376
+
377
+ /* "?"-specific style due to the `<a>` HTML tag */
378
+
379
+ #sk-container-id-179 a.estimator_doc_link {
380
+ float: right;
381
+ font-size: 1rem;
382
+ line-height: 1em;
383
+ font-family: monospace;
384
+ background-color: var(--sklearn-color-background);
385
+ border-radius: 1rem;
386
+ height: 1rem;
387
+ width: 1rem;
388
+ text-decoration: none;
389
+ /* unfitted */
390
+ color: var(--sklearn-color-unfitted-level-1);
391
+ border: var(--sklearn-color-unfitted-level-1) 1pt solid;
392
+ }
393
+
394
+ #sk-container-id-179 a.estimator_doc_link.fitted {
395
+ /* fitted */
396
+ border: var(--sklearn-color-fitted-level-1) 1pt solid;
397
+ color: var(--sklearn-color-fitted-level-1);
398
+ }
399
+
400
+ /* On hover */
401
+ #sk-container-id-179 a.estimator_doc_link:hover {
402
+ /* unfitted */
403
+ background-color: var(--sklearn-color-unfitted-level-3);
404
+ color: var(--sklearn-color-background);
405
+ text-decoration: none;
406
+ }
407
+
408
+ #sk-container-id-179 a.estimator_doc_link.fitted:hover {
409
+ /* fitted */
410
+ background-color: var(--sklearn-color-fitted-level-3);
411
+ }
412
+ </style><div id="sk-container-id-179" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestRegressor(max_depth=15)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-179" type="checkbox" checked><label for="sk-estimator-id-179" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;RandomForestRegressor<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestRegressor.html">?<span>Documentation for RandomForestRegressor</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>RandomForestRegressor(max_depth=15)</pre></div> </div></div></div></div>
413
+ </body>
414
+ </html>
415
+
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/metric_info.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
3
+ "root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
4
+ }
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/MLmodel ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: model
2
+ flavors:
3
+ python_function:
4
+ env:
5
+ conda: conda.yaml
6
+ virtualenv: python_env.yaml
7
+ loader_module: mlflow.sklearn
8
+ model_path: model.pkl
9
+ predict_fn: predict
10
+ python_version: 3.11.0
11
+ sklearn:
12
+ code: null
13
+ pickled_model: model.pkl
14
+ serialization_format: cloudpickle
15
+ sklearn_version: 1.5.2
16
+ mlflow_version: 2.16.2
17
+ model_size_bytes: 27144373
18
+ model_uuid: 56947e681896418498166a990e508991
19
+ run_id: e8a145a55c094cdc9e55c7b9d5a89bf5
20
+ signature:
21
+ inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
22
+ outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1,
23
+ 6]}}]'
24
+ params: null
25
+ utc_time_created: '2024-09-29 14:04:08.170828'
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/conda.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.11.0
5
+ - pip<=24.2
6
+ - pip:
7
+ - mlflow==2.16.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.2
10
+ - pandas==2.2.2
11
+ - psutil==5.9.4
12
+ - scikit-learn==1.5.2
13
+ - scipy==1.11.4
14
+ - typing==3.7.4.3
15
+ name: mlflow-env
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6f7ccc9cdf95b931a1c4f302f52e9af0a41e5680a366036918942c14385695d
3
+ size 27144373
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.11.0
2
+ build_dependencies:
3
+ - pip==24.2
4
+ - setuptools==65.5.0
5
+ - wheel==0.41.2
6
+ dependencies:
7
+ - -r requirements.txt
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.16.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.2
4
+ pandas==2.2.2
5
+ psutil==5.9.4
6
+ scikit-learn==1.5.2
7
+ scipy==1.11.4
8
+ typing==3.7.4.3
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"f0": 29615.0, "f1": 11292.0, "f2": 8414.0, "f3": 5616.0, "f4": 7293.0, "f5": 7162.0, "f6": 5658.0, "f7": 5612.0, "f8": 3015.0, "f9": 3550.0, "f10": 5736.0, "f11": 4344.0, "f12": 3494.0, "f13": 3455.0, "f14": 2640.0, "f15": 3343.0, "f16": 3822.0, "f17": 3907.0, "f18": 3711.0, "f19": 2348.0, "f20": 2573.0, "f21": 4049.0, "f22": 3880.0, "f23": 3365.0, "f24": 3270.0, "f25": 2622.0, "f26": 2991.0, "f27": 3360.0, "f28": 3550.0, "f29": 3543.0, "f30": 2197.0, "f31": 2237.0, "f32": 3702.0}
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.png ADDED
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/metric_info.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
3
+ "root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
4
+ }
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/MLmodel ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: model
2
+ flavors:
3
+ python_function:
4
+ data: model.xgb
5
+ env:
6
+ conda: conda.yaml
7
+ virtualenv: python_env.yaml
8
+ loader_module: mlflow.xgboost
9
+ python_version: 3.11.0
10
+ xgboost:
11
+ code: null
12
+ data: model.xgb
13
+ model_class: xgboost.sklearn.XGBRegressor
14
+ model_format: xgb
15
+ xgb_version: 2.1.1
16
+ mlflow_version: 2.16.2
17
+ model_size_bytes: 11660654
18
+ model_uuid: 3ba468a8c7f44dc18fe6561fc452fc93
19
+ run_id: 29a7ce3e5aff4004b017460bf6d2274b
20
+ signature:
21
+ inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
22
+ outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
23
+ 6]}}]'
24
+ params: null
25
+ utc_time_created: '2024-09-29 16:10:49.744301'
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/conda.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.11.0
5
+ - pip<=24.2
6
+ - pip:
7
+ - mlflow==2.16.2
8
+ - numpy==1.26.2
9
+ - pandas==2.2.2
10
+ - psutil==5.9.4
11
+ - scikit-learn==1.5.2
12
+ - scipy==1.11.4
13
+ - typing==3.7.4.3
14
+ - xgboost==2.1.1
15
+ name: mlflow-env
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/model.xgb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e66c019d2c5ad70910dca6fe39fbed43695be2d1b5871084c3a8aef52725c245
3
+ size 11660654
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.11.0
2
+ build_dependencies:
3
+ - pip==24.2
4
+ - setuptools==65.5.0
5
+ - wheel==0.41.2
6
+ dependencies:
7
+ - -r requirements.txt
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.16.2
2
+ numpy==1.26.2
3
+ pandas==2.2.2
4
+ psutil==5.9.4
5
+ scikit-learn==1.5.2
6
+ scipy==1.11.4
7
+ typing==3.7.4.3
8
+ xgboost==2.1.1
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"f0": 29615.0, "f1": 11292.0, "f2": 8414.0, "f3": 5616.0, "f4": 7293.0, "f5": 7162.0, "f6": 5658.0, "f7": 5612.0, "f8": 3015.0, "f9": 3550.0, "f10": 5736.0, "f11": 4344.0, "f12": 3494.0, "f13": 3455.0, "f14": 2640.0, "f15": 3343.0, "f16": 3822.0, "f17": 3907.0, "f18": 3711.0, "f19": 2348.0, "f20": 2573.0, "f21": 4049.0, "f22": 3880.0, "f23": 3365.0, "f24": 3270.0, "f25": 2622.0, "f26": 2991.0, "f27": 3360.0, "f28": 3550.0, "f29": 3543.0, "f30": 2197.0, "f31": 2237.0, "f32": 3702.0}
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.png ADDED
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/metric_info.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
3
+ "root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
4
+ }
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/MLmodel ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: model
2
+ flavors:
3
+ python_function:
4
+ data: model.xgb
5
+ env:
6
+ conda: conda.yaml
7
+ virtualenv: python_env.yaml
8
+ loader_module: mlflow.xgboost
9
+ python_version: 3.11.0
10
+ xgboost:
11
+ code: null
12
+ data: model.xgb
13
+ model_class: xgboost.sklearn.XGBRegressor
14
+ model_format: xgb
15
+ xgb_version: 2.1.1
16
+ mlflow_version: 2.16.2
17
+ model_size_bytes: 11660654
18
+ model_uuid: 283a41e11ba04ccab1f3995d5a820c21
19
+ run_id: 4e8ce91d81c549cf80846c249e959c20
20
+ signature:
21
+ inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
22
+ outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
23
+ 6]}}]'
24
+ params: null
25
+ utc_time_created: '2024-09-29 16:13:38.960625'
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/conda.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.11.0
5
+ - pip<=24.2
6
+ - pip:
7
+ - mlflow==2.16.2
8
+ - numpy==1.26.2
9
+ - pandas==2.2.2
10
+ - psutil==5.9.4
11
+ - scikit-learn==1.5.2
12
+ - scipy==1.11.4
13
+ - typing==3.7.4.3
14
+ - xgboost==2.1.1
15
+ name: mlflow-env
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/model.xgb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e66c019d2c5ad70910dca6fe39fbed43695be2d1b5871084c3a8aef52725c245
3
+ size 11660654
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.11.0
2
+ build_dependencies:
3
+ - pip==24.2
4
+ - setuptools==65.5.0
5
+ - wheel==0.41.2
6
+ dependencies:
7
+ - -r requirements.txt
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.16.2
2
+ numpy==1.26.2
3
+ pandas==2.2.2
4
+ psutil==5.9.4
5
+ scikit-learn==1.5.2
6
+ scipy==1.11.4
7
+ typing==3.7.4.3
8
+ xgboost==2.1.1
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/MLmodel ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_model
2
+ flavors:
3
+ python_function:
4
+ env:
5
+ conda: conda.yaml
6
+ virtualenv: python_env.yaml
7
+ loader_module: mlflow.sklearn
8
+ model_path: model.pkl
9
+ predict_fn: predict
10
+ python_version: 3.11.0
11
+ sklearn:
12
+ code: null
13
+ pickled_model: model.pkl
14
+ serialization_format: cloudpickle
15
+ sklearn_version: 1.5.2
16
+ mlflow_version: 2.16.2
17
+ model_size_bytes: 11407821
18
+ model_uuid: 5cb54f6260b84fa29d75b2e6afba3f99
19
+ run_id: f8998a2203ac4d6bacfa9e2fe9e15a2a
20
+ saved_input_example_info:
21
+ artifact_path: input_example.json
22
+ serving_input_path: serving_input_example.json
23
+ type: ndarray
24
+ signature:
25
+ inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
26
+ outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
27
+ 6]}}]'
28
+ params: null
29
+ utc_time_created: '2024-09-29 13:58:12.617369'
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/conda.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.11.0
5
+ - pip<=24.2
6
+ - pip:
7
+ - mlflow==2.16.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.2
10
+ - pandas==2.2.2
11
+ - psutil==5.9.4
12
+ - scikit-learn==1.5.2
13
+ - scipy==1.11.4
14
+ - typing==3.7.4.3
15
+ - xgboost==2.1.1
16
+ name: mlflow-env
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/input_example.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [[0.1383647798742138, 0.074074074074074, 0.3113207547169811, 0.064516129032258, 0.6015831134564643, 0.6025236593059935, 0.5384615384615385, 0.5291806958473626, 0.0245398773006134, 0.1299638989169675, 0.0472616068946344, 0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655], [0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941], [0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949], [0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613], [0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613, 0.2578616352201258, 0.0493827160493827, 0.1981132075471698, 0.064516129032258, 0.6912928759894458, 0.8675078864353312, 0.265934065934066, 0.5830527497194165, 0.0224948875255623, 0.1299638989169675, 0.9043647484014457]]
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd12651826ab18510858b44d343835b7c672f3da49f08c102cf0fb6b03c9813c
3
+ size 11400063
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.11.0
2
+ build_dependencies:
3
+ - pip==24.2
4
+ - setuptools==65.5.0
5
+ - wheel==0.41.2
6
+ dependencies:
7
+ - -r requirements.txt
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.16.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.2
4
+ pandas==2.2.2
5
+ psutil==5.9.4
6
+ scikit-learn==1.5.2
7
+ scipy==1.11.4
8
+ typing==3.7.4.3
9
+ xgboost==2.1.1
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/serving_input_example.json ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "inputs": [
3
+ [
4
+ 0.1383647798742138,
5
+ 0.074074074074074,
6
+ 0.3113207547169811,
7
+ 0.064516129032258,
8
+ 0.6015831134564643,
9
+ 0.6025236593059935,
10
+ 0.5384615384615385,
11
+ 0.5291806958473626,
12
+ 0.0245398773006134,
13
+ 0.1299638989169675,
14
+ 0.0472616068946344,
15
+ 0.1823899371069182,
16
+ 0.1604938271604938,
17
+ 0.1698113207547169,
18
+ 0.2258064516129032,
19
+ 0.6332453825857519,
20
+ 0.5536277602523658,
21
+ 0.7318681318681319,
22
+ 0.7530864197530865,
23
+ 0.0,
24
+ 0.0649819494584837,
25
+ 0.0005560189046427,
26
+ 0.3144654088050315,
27
+ 0.1358024691358024,
28
+ 0.4056603773584905,
29
+ 0.0967741935483871,
30
+ 0.5936675461741424,
31
+ 0.8028391167192428,
32
+ 0.1912087912087912,
33
+ 0.6315937149270483,
34
+ 0.0265848670756646,
35
+ 0.259927797833935,
36
+ 0.5535168195718655
37
+ ],
38
+ [
39
+ 0.1823899371069182,
40
+ 0.1604938271604938,
41
+ 0.1698113207547169,
42
+ 0.2258064516129032,
43
+ 0.6332453825857519,
44
+ 0.5536277602523658,
45
+ 0.7318681318681319,
46
+ 0.7530864197530865,
47
+ 0.0,
48
+ 0.0649819494584837,
49
+ 0.0005560189046427,
50
+ 0.3144654088050315,
51
+ 0.1358024691358024,
52
+ 0.4056603773584905,
53
+ 0.0967741935483871,
54
+ 0.5936675461741424,
55
+ 0.8028391167192428,
56
+ 0.1912087912087912,
57
+ 0.6315937149270483,
58
+ 0.0265848670756646,
59
+ 0.259927797833935,
60
+ 0.5535168195718655,
61
+ 0.3207547169811321,
62
+ 0.2345679012345679,
63
+ 0.3584905660377358,
64
+ 0.032258064516129,
65
+ 0.7308707124010553,
66
+ 0.6640378548895898,
67
+ 0.2483516483516483,
68
+ 0.7463524130190798,
69
+ 0.0040899795501022,
70
+ 0.1299638989169675,
71
+ 0.2730052821795941
72
+ ],
73
+ [
74
+ 0.3144654088050315,
75
+ 0.1358024691358024,
76
+ 0.4056603773584905,
77
+ 0.0967741935483871,
78
+ 0.5936675461741424,
79
+ 0.8028391167192428,
80
+ 0.1912087912087912,
81
+ 0.6315937149270483,
82
+ 0.0265848670756646,
83
+ 0.259927797833935,
84
+ 0.5535168195718655,
85
+ 0.3207547169811321,
86
+ 0.2345679012345679,
87
+ 0.3584905660377358,
88
+ 0.032258064516129,
89
+ 0.7308707124010553,
90
+ 0.6640378548895898,
91
+ 0.2483516483516483,
92
+ 0.7463524130190798,
93
+ 0.0040899795501022,
94
+ 0.1299638989169675,
95
+ 0.2730052821795941,
96
+ 0.3018867924528302,
97
+ 0.1234567901234567,
98
+ 0.2547169811320754,
99
+ 0.1290322580645161,
100
+ 0.7678100263852242,
101
+ 0.6529968454258674,
102
+ 0.276923076923077,
103
+ 0.5120650953984288,
104
+ 0.130879345603272,
105
+ 0.3898916967509025,
106
+ 0.2288017792604949
107
+ ],
108
+ [
109
+ 0.3207547169811321,
110
+ 0.2345679012345679,
111
+ 0.3584905660377358,
112
+ 0.032258064516129,
113
+ 0.7308707124010553,
114
+ 0.6640378548895898,
115
+ 0.2483516483516483,
116
+ 0.7463524130190798,
117
+ 0.0040899795501022,
118
+ 0.1299638989169675,
119
+ 0.2730052821795941,
120
+ 0.3018867924528302,
121
+ 0.1234567901234567,
122
+ 0.2547169811320754,
123
+ 0.1290322580645161,
124
+ 0.7678100263852242,
125
+ 0.6529968454258674,
126
+ 0.276923076923077,
127
+ 0.5120650953984288,
128
+ 0.130879345603272,
129
+ 0.3898916967509025,
130
+ 0.2288017792604949,
131
+ 0.289308176100629,
132
+ 0.0987654320987654,
133
+ 0.1792452830188679,
134
+ 0.0967741935483871,
135
+ 0.7546174142480211,
136
+ 0.7807570977917981,
137
+ 0.2395604395604395,
138
+ 0.457351290684624,
139
+ 0.0020449897750511,
140
+ 0.0649819494584837,
141
+ 0.0567139282735613
142
+ ],
143
+ [
144
+ 0.3018867924528302,
145
+ 0.1234567901234567,
146
+ 0.2547169811320754,
147
+ 0.1290322580645161,
148
+ 0.7678100263852242,
149
+ 0.6529968454258674,
150
+ 0.276923076923077,
151
+ 0.5120650953984288,
152
+ 0.130879345603272,
153
+ 0.3898916967509025,
154
+ 0.2288017792604949,
155
+ 0.289308176100629,
156
+ 0.0987654320987654,
157
+ 0.1792452830188679,
158
+ 0.0967741935483871,
159
+ 0.7546174142480211,
160
+ 0.7807570977917981,
161
+ 0.2395604395604395,
162
+ 0.457351290684624,
163
+ 0.0020449897750511,
164
+ 0.0649819494584837,
165
+ 0.0567139282735613,
166
+ 0.2578616352201258,
167
+ 0.0493827160493827,
168
+ 0.1981132075471698,
169
+ 0.064516129032258,
170
+ 0.6912928759894458,
171
+ 0.8675078864353312,
172
+ 0.265934065934066,
173
+ 0.5830527497194165,
174
+ 0.0224948875255623,
175
+ 0.1299638989169675,
176
+ 0.9043647484014457
177
+ ]
178
+ ]
179
+ }
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/MLmodel ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_model
2
+ flavors:
3
+ python_function:
4
+ env:
5
+ conda: conda.yaml
6
+ virtualenv: python_env.yaml
7
+ loader_module: mlflow.sklearn
8
+ model_path: model.pkl
9
+ predict_fn: predict
10
+ python_version: 3.11.0
11
+ sklearn:
12
+ code: null
13
+ pickled_model: model.pkl
14
+ serialization_format: cloudpickle
15
+ sklearn_version: 1.5.2
16
+ mlflow_version: 2.16.2
17
+ model_size_bytes: 11407815
18
+ model_uuid: 751117a69bb044bbac47f376adec2200
19
+ run_id: fcc0e9c35f1a4a88a44f203406bf3ccd
20
+ saved_input_example_info:
21
+ artifact_path: input_example.json
22
+ serving_input_path: serving_input_example.json
23
+ type: ndarray
24
+ signature:
25
+ inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
26
+ outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
27
+ 6]}}]'
28
+ params: null
29
+ utc_time_created: '2024-09-29 13:49:44.291808'
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/conda.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.11.0
5
+ - pip<=24.2
6
+ - pip:
7
+ - mlflow==2.16.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.2
10
+ - pandas==2.2.2
11
+ - psutil==5.9.4
12
+ - scikit-learn==1.5.2
13
+ - scipy==1.11.4
14
+ - typing==3.7.4.3
15
+ - xgboost==2.1.1
16
+ name: mlflow-env
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/input_example.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [[0.1383647798742138, 0.074074074074074, 0.3113207547169811, 0.064516129032258, 0.6015831134564643, 0.6025236593059935, 0.5384615384615385, 0.5291806958473626, 0.0245398773006134, 0.1299638989169675, 0.0472616068946344, 0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655], [0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941], [0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949], [0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613], [0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613, 0.2578616352201258, 0.0493827160493827, 0.1981132075471698, 0.064516129032258, 0.6912928759894458, 0.8675078864353312, 0.265934065934066, 0.5830527497194165, 0.0224948875255623, 0.1299638989169675, 0.9043647484014457]]
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7347f2f3ad2a8b185248e534e5b3c562aee728d94c9b03ebc280d1fc65eb562e
3
+ size 11400057
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.11.0
2
+ build_dependencies:
3
+ - pip==24.2
4
+ - setuptools==65.5.0
5
+ - wheel==0.41.2
6
+ dependencies:
7
+ - -r requirements.txt
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.16.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.2
4
+ pandas==2.2.2
5
+ psutil==5.9.4
6
+ scikit-learn==1.5.2
7
+ scipy==1.11.4
8
+ typing==3.7.4.3
9
+ xgboost==2.1.1