Spaces:
Sleeping
Sleeping
atodorov284
commited on
Commit
·
18117cd
1
Parent(s):
5d16f3a
Set up MLFlow. Automatic server setup at localhost 5000. Experiments for decision tree, random forest, and xgboost set up, optimized through Bayesian search.
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/MLmodel +29 -0
- notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/conda.yaml +15 -0
- notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/input_example.json +1 -0
- notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/model.pkl +3 -0
- notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/python_env.yaml +7 -0
- notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/requirements.txt +8 -0
- notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/serving_input_example.json +179 -0
- notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/estimator.html +415 -0
- notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/metric_info.json +4 -0
- notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/MLmodel +25 -0
- notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/conda.yaml +15 -0
- notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/model.pkl +3 -0
- notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/python_env.yaml +7 -0
- notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/requirements.txt +8 -0
- notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/estimator.html +415 -0
- notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/metric_info.json +4 -0
- notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/MLmodel +25 -0
- notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/conda.yaml +15 -0
- notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/model.pkl +3 -0
- notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/python_env.yaml +7 -0
- notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/requirements.txt +8 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.json +1 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.png +0 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/metric_info.json +4 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/MLmodel +25 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/conda.yaml +15 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/model.xgb +3 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/python_env.yaml +7 -0
- notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/requirements.txt +8 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.json +1 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.png +0 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/metric_info.json +4 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/MLmodel +25 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/conda.yaml +15 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/model.xgb +3 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/python_env.yaml +7 -0
- notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/requirements.txt +8 -0
- notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/MLmodel +29 -0
- notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/conda.yaml +16 -0
- notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/input_example.json +1 -0
- notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/model.pkl +3 -0
- notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/python_env.yaml +7 -0
- notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/requirements.txt +9 -0
- notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/serving_input_example.json +179 -0
- notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/MLmodel +29 -0
- notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/conda.yaml +16 -0
- notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/input_example.json +1 -0
- notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/model.pkl +3 -0
- notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/python_env.yaml +7 -0
- notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/requirements.txt +9 -0
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/MLmodel
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
artifact_path: best_model
|
| 2 |
+
flavors:
|
| 3 |
+
python_function:
|
| 4 |
+
env:
|
| 5 |
+
conda: conda.yaml
|
| 6 |
+
virtualenv: python_env.yaml
|
| 7 |
+
loader_module: mlflow.sklearn
|
| 8 |
+
model_path: model.pkl
|
| 9 |
+
predict_fn: predict
|
| 10 |
+
python_version: 3.11.0
|
| 11 |
+
sklearn:
|
| 12 |
+
code: null
|
| 13 |
+
pickled_model: model.pkl
|
| 14 |
+
serialization_format: cloudpickle
|
| 15 |
+
sklearn_version: 1.5.2
|
| 16 |
+
mlflow_version: 2.16.2
|
| 17 |
+
model_size_bytes: 27152183
|
| 18 |
+
model_uuid: 5040f599914b4f5888739b95285524f2
|
| 19 |
+
run_id: 6bfd7856e3624d38aadfd33e3fc79343
|
| 20 |
+
saved_input_example_info:
|
| 21 |
+
artifact_path: input_example.json
|
| 22 |
+
serving_input_path: serving_input_example.json
|
| 23 |
+
type: ndarray
|
| 24 |
+
signature:
|
| 25 |
+
inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
|
| 26 |
+
outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1,
|
| 27 |
+
6]}}]'
|
| 28 |
+
params: null
|
| 29 |
+
utc_time_created: '2024-09-29 14:04:14.687971'
|
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/conda.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
channels:
|
| 2 |
+
- conda-forge
|
| 3 |
+
dependencies:
|
| 4 |
+
- python=3.11.0
|
| 5 |
+
- pip<=24.2
|
| 6 |
+
- pip:
|
| 7 |
+
- mlflow==2.16.2
|
| 8 |
+
- cloudpickle==3.0.0
|
| 9 |
+
- numpy==1.26.2
|
| 10 |
+
- pandas==2.2.2
|
| 11 |
+
- psutil==5.9.4
|
| 12 |
+
- scikit-learn==1.5.2
|
| 13 |
+
- scipy==1.11.4
|
| 14 |
+
- typing==3.7.4.3
|
| 15 |
+
name: mlflow-env
|
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/input_example.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[[0.1383647798742138, 0.074074074074074, 0.3113207547169811, 0.064516129032258, 0.6015831134564643, 0.6025236593059935, 0.5384615384615385, 0.5291806958473626, 0.0245398773006134, 0.1299638989169675, 0.0472616068946344, 0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655], [0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941], [0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949], [0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613], [0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613, 0.2578616352201258, 0.0493827160493827, 0.1981132075471698, 0.064516129032258, 0.6912928759894458, 0.8675078864353312, 0.265934065934066, 0.5830527497194165, 0.0224948875255623, 0.1299638989169675, 0.9043647484014457]]
|
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abe041262c93657c930e8324ddd788dbdba25acb647e245a71ffd18ce004cae8
|
| 3 |
+
size 27144425
|
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/python_env.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python: 3.11.0
|
| 2 |
+
build_dependencies:
|
| 3 |
+
- pip==24.2
|
| 4 |
+
- setuptools==65.5.0
|
| 5 |
+
- wheel==0.41.2
|
| 6 |
+
dependencies:
|
| 7 |
+
- -r requirements.txt
|
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.16.2
|
| 2 |
+
cloudpickle==3.0.0
|
| 3 |
+
numpy==1.26.2
|
| 4 |
+
pandas==2.2.2
|
| 5 |
+
psutil==5.9.4
|
| 6 |
+
scikit-learn==1.5.2
|
| 7 |
+
scipy==1.11.4
|
| 8 |
+
typing==3.7.4.3
|
notebooks/mlartifacts/475209732522917118/6bfd7856e3624d38aadfd33e3fc79343/artifacts/best_model/serving_input_example.json
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"inputs": [
|
| 3 |
+
[
|
| 4 |
+
0.1383647798742138,
|
| 5 |
+
0.074074074074074,
|
| 6 |
+
0.3113207547169811,
|
| 7 |
+
0.064516129032258,
|
| 8 |
+
0.6015831134564643,
|
| 9 |
+
0.6025236593059935,
|
| 10 |
+
0.5384615384615385,
|
| 11 |
+
0.5291806958473626,
|
| 12 |
+
0.0245398773006134,
|
| 13 |
+
0.1299638989169675,
|
| 14 |
+
0.0472616068946344,
|
| 15 |
+
0.1823899371069182,
|
| 16 |
+
0.1604938271604938,
|
| 17 |
+
0.1698113207547169,
|
| 18 |
+
0.2258064516129032,
|
| 19 |
+
0.6332453825857519,
|
| 20 |
+
0.5536277602523658,
|
| 21 |
+
0.7318681318681319,
|
| 22 |
+
0.7530864197530865,
|
| 23 |
+
0.0,
|
| 24 |
+
0.0649819494584837,
|
| 25 |
+
0.0005560189046427,
|
| 26 |
+
0.3144654088050315,
|
| 27 |
+
0.1358024691358024,
|
| 28 |
+
0.4056603773584905,
|
| 29 |
+
0.0967741935483871,
|
| 30 |
+
0.5936675461741424,
|
| 31 |
+
0.8028391167192428,
|
| 32 |
+
0.1912087912087912,
|
| 33 |
+
0.6315937149270483,
|
| 34 |
+
0.0265848670756646,
|
| 35 |
+
0.259927797833935,
|
| 36 |
+
0.5535168195718655
|
| 37 |
+
],
|
| 38 |
+
[
|
| 39 |
+
0.1823899371069182,
|
| 40 |
+
0.1604938271604938,
|
| 41 |
+
0.1698113207547169,
|
| 42 |
+
0.2258064516129032,
|
| 43 |
+
0.6332453825857519,
|
| 44 |
+
0.5536277602523658,
|
| 45 |
+
0.7318681318681319,
|
| 46 |
+
0.7530864197530865,
|
| 47 |
+
0.0,
|
| 48 |
+
0.0649819494584837,
|
| 49 |
+
0.0005560189046427,
|
| 50 |
+
0.3144654088050315,
|
| 51 |
+
0.1358024691358024,
|
| 52 |
+
0.4056603773584905,
|
| 53 |
+
0.0967741935483871,
|
| 54 |
+
0.5936675461741424,
|
| 55 |
+
0.8028391167192428,
|
| 56 |
+
0.1912087912087912,
|
| 57 |
+
0.6315937149270483,
|
| 58 |
+
0.0265848670756646,
|
| 59 |
+
0.259927797833935,
|
| 60 |
+
0.5535168195718655,
|
| 61 |
+
0.3207547169811321,
|
| 62 |
+
0.2345679012345679,
|
| 63 |
+
0.3584905660377358,
|
| 64 |
+
0.032258064516129,
|
| 65 |
+
0.7308707124010553,
|
| 66 |
+
0.6640378548895898,
|
| 67 |
+
0.2483516483516483,
|
| 68 |
+
0.7463524130190798,
|
| 69 |
+
0.0040899795501022,
|
| 70 |
+
0.1299638989169675,
|
| 71 |
+
0.2730052821795941
|
| 72 |
+
],
|
| 73 |
+
[
|
| 74 |
+
0.3144654088050315,
|
| 75 |
+
0.1358024691358024,
|
| 76 |
+
0.4056603773584905,
|
| 77 |
+
0.0967741935483871,
|
| 78 |
+
0.5936675461741424,
|
| 79 |
+
0.8028391167192428,
|
| 80 |
+
0.1912087912087912,
|
| 81 |
+
0.6315937149270483,
|
| 82 |
+
0.0265848670756646,
|
| 83 |
+
0.259927797833935,
|
| 84 |
+
0.5535168195718655,
|
| 85 |
+
0.3207547169811321,
|
| 86 |
+
0.2345679012345679,
|
| 87 |
+
0.3584905660377358,
|
| 88 |
+
0.032258064516129,
|
| 89 |
+
0.7308707124010553,
|
| 90 |
+
0.6640378548895898,
|
| 91 |
+
0.2483516483516483,
|
| 92 |
+
0.7463524130190798,
|
| 93 |
+
0.0040899795501022,
|
| 94 |
+
0.1299638989169675,
|
| 95 |
+
0.2730052821795941,
|
| 96 |
+
0.3018867924528302,
|
| 97 |
+
0.1234567901234567,
|
| 98 |
+
0.2547169811320754,
|
| 99 |
+
0.1290322580645161,
|
| 100 |
+
0.7678100263852242,
|
| 101 |
+
0.6529968454258674,
|
| 102 |
+
0.276923076923077,
|
| 103 |
+
0.5120650953984288,
|
| 104 |
+
0.130879345603272,
|
| 105 |
+
0.3898916967509025,
|
| 106 |
+
0.2288017792604949
|
| 107 |
+
],
|
| 108 |
+
[
|
| 109 |
+
0.3207547169811321,
|
| 110 |
+
0.2345679012345679,
|
| 111 |
+
0.3584905660377358,
|
| 112 |
+
0.032258064516129,
|
| 113 |
+
0.7308707124010553,
|
| 114 |
+
0.6640378548895898,
|
| 115 |
+
0.2483516483516483,
|
| 116 |
+
0.7463524130190798,
|
| 117 |
+
0.0040899795501022,
|
| 118 |
+
0.1299638989169675,
|
| 119 |
+
0.2730052821795941,
|
| 120 |
+
0.3018867924528302,
|
| 121 |
+
0.1234567901234567,
|
| 122 |
+
0.2547169811320754,
|
| 123 |
+
0.1290322580645161,
|
| 124 |
+
0.7678100263852242,
|
| 125 |
+
0.6529968454258674,
|
| 126 |
+
0.276923076923077,
|
| 127 |
+
0.5120650953984288,
|
| 128 |
+
0.130879345603272,
|
| 129 |
+
0.3898916967509025,
|
| 130 |
+
0.2288017792604949,
|
| 131 |
+
0.289308176100629,
|
| 132 |
+
0.0987654320987654,
|
| 133 |
+
0.1792452830188679,
|
| 134 |
+
0.0967741935483871,
|
| 135 |
+
0.7546174142480211,
|
| 136 |
+
0.7807570977917981,
|
| 137 |
+
0.2395604395604395,
|
| 138 |
+
0.457351290684624,
|
| 139 |
+
0.0020449897750511,
|
| 140 |
+
0.0649819494584837,
|
| 141 |
+
0.0567139282735613
|
| 142 |
+
],
|
| 143 |
+
[
|
| 144 |
+
0.3018867924528302,
|
| 145 |
+
0.1234567901234567,
|
| 146 |
+
0.2547169811320754,
|
| 147 |
+
0.1290322580645161,
|
| 148 |
+
0.7678100263852242,
|
| 149 |
+
0.6529968454258674,
|
| 150 |
+
0.276923076923077,
|
| 151 |
+
0.5120650953984288,
|
| 152 |
+
0.130879345603272,
|
| 153 |
+
0.3898916967509025,
|
| 154 |
+
0.2288017792604949,
|
| 155 |
+
0.289308176100629,
|
| 156 |
+
0.0987654320987654,
|
| 157 |
+
0.1792452830188679,
|
| 158 |
+
0.0967741935483871,
|
| 159 |
+
0.7546174142480211,
|
| 160 |
+
0.7807570977917981,
|
| 161 |
+
0.2395604395604395,
|
| 162 |
+
0.457351290684624,
|
| 163 |
+
0.0020449897750511,
|
| 164 |
+
0.0649819494584837,
|
| 165 |
+
0.0567139282735613,
|
| 166 |
+
0.2578616352201258,
|
| 167 |
+
0.0493827160493827,
|
| 168 |
+
0.1981132075471698,
|
| 169 |
+
0.064516129032258,
|
| 170 |
+
0.6912928759894458,
|
| 171 |
+
0.8675078864353312,
|
| 172 |
+
0.265934065934066,
|
| 173 |
+
0.5830527497194165,
|
| 174 |
+
0.0224948875255623,
|
| 175 |
+
0.1299638989169675,
|
| 176 |
+
0.9043647484014457
|
| 177 |
+
]
|
| 178 |
+
]
|
| 179 |
+
}
|
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/estimator.html
ADDED
|
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
<!DOCTYPE html>
|
| 3 |
+
<html lang="en">
|
| 4 |
+
<head>
|
| 5 |
+
<meta charset="UTF-8"/>
|
| 6 |
+
</head>
|
| 7 |
+
<body>
|
| 8 |
+
<style>#sk-container-id-5 {
|
| 9 |
+
/* Definition of color scheme common for light and dark mode */
|
| 10 |
+
--sklearn-color-text: black;
|
| 11 |
+
--sklearn-color-line: gray;
|
| 12 |
+
/* Definition of color scheme for unfitted estimators */
|
| 13 |
+
--sklearn-color-unfitted-level-0: #fff5e6;
|
| 14 |
+
--sklearn-color-unfitted-level-1: #f6e4d2;
|
| 15 |
+
--sklearn-color-unfitted-level-2: #ffe0b3;
|
| 16 |
+
--sklearn-color-unfitted-level-3: chocolate;
|
| 17 |
+
/* Definition of color scheme for fitted estimators */
|
| 18 |
+
--sklearn-color-fitted-level-0: #f0f8ff;
|
| 19 |
+
--sklearn-color-fitted-level-1: #d4ebff;
|
| 20 |
+
--sklearn-color-fitted-level-2: #b3dbfd;
|
| 21 |
+
--sklearn-color-fitted-level-3: cornflowerblue;
|
| 22 |
+
|
| 23 |
+
/* Specific color for light theme */
|
| 24 |
+
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
|
| 25 |
+
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
|
| 26 |
+
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
|
| 27 |
+
--sklearn-color-icon: #696969;
|
| 28 |
+
|
| 29 |
+
@media (prefers-color-scheme: dark) {
|
| 30 |
+
/* Redefinition of color scheme for dark theme */
|
| 31 |
+
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
|
| 32 |
+
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
|
| 33 |
+
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
|
| 34 |
+
--sklearn-color-icon: #878787;
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
#sk-container-id-5 {
|
| 39 |
+
color: var(--sklearn-color-text);
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
#sk-container-id-5 pre {
|
| 43 |
+
padding: 0;
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
#sk-container-id-5 input.sk-hidden--visually {
|
| 47 |
+
border: 0;
|
| 48 |
+
clip: rect(1px 1px 1px 1px);
|
| 49 |
+
clip: rect(1px, 1px, 1px, 1px);
|
| 50 |
+
height: 1px;
|
| 51 |
+
margin: -1px;
|
| 52 |
+
overflow: hidden;
|
| 53 |
+
padding: 0;
|
| 54 |
+
position: absolute;
|
| 55 |
+
width: 1px;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
#sk-container-id-5 div.sk-dashed-wrapped {
|
| 59 |
+
border: 1px dashed var(--sklearn-color-line);
|
| 60 |
+
margin: 0 0.4em 0.5em 0.4em;
|
| 61 |
+
box-sizing: border-box;
|
| 62 |
+
padding-bottom: 0.4em;
|
| 63 |
+
background-color: var(--sklearn-color-background);
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
#sk-container-id-5 div.sk-container {
|
| 67 |
+
/* jupyter's `normalize.less` sets `[hidden] { display: none; }`
|
| 68 |
+
but bootstrap.min.css set `[hidden] { display: none !important; }`
|
| 69 |
+
so we also need the `!important` here to be able to override the
|
| 70 |
+
default hidden behavior on the sphinx rendered scikit-learn.org.
|
| 71 |
+
See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
|
| 72 |
+
display: inline-block !important;
|
| 73 |
+
position: relative;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
#sk-container-id-5 div.sk-text-repr-fallback {
|
| 77 |
+
display: none;
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
div.sk-parallel-item,
|
| 81 |
+
div.sk-serial,
|
| 82 |
+
div.sk-item {
|
| 83 |
+
/* draw centered vertical line to link estimators */
|
| 84 |
+
background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
|
| 85 |
+
background-size: 2px 100%;
|
| 86 |
+
background-repeat: no-repeat;
|
| 87 |
+
background-position: center center;
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
/* Parallel-specific style estimator block */
|
| 91 |
+
|
| 92 |
+
#sk-container-id-5 div.sk-parallel-item::after {
|
| 93 |
+
content: "";
|
| 94 |
+
width: 100%;
|
| 95 |
+
border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
|
| 96 |
+
flex-grow: 1;
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
#sk-container-id-5 div.sk-parallel {
|
| 100 |
+
display: flex;
|
| 101 |
+
align-items: stretch;
|
| 102 |
+
justify-content: center;
|
| 103 |
+
background-color: var(--sklearn-color-background);
|
| 104 |
+
position: relative;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
#sk-container-id-5 div.sk-parallel-item {
|
| 108 |
+
display: flex;
|
| 109 |
+
flex-direction: column;
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
#sk-container-id-5 div.sk-parallel-item:first-child::after {
|
| 113 |
+
align-self: flex-end;
|
| 114 |
+
width: 50%;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
#sk-container-id-5 div.sk-parallel-item:last-child::after {
|
| 118 |
+
align-self: flex-start;
|
| 119 |
+
width: 50%;
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
#sk-container-id-5 div.sk-parallel-item:only-child::after {
|
| 123 |
+
width: 0;
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
/* Serial-specific style estimator block */
|
| 127 |
+
|
| 128 |
+
#sk-container-id-5 div.sk-serial {
|
| 129 |
+
display: flex;
|
| 130 |
+
flex-direction: column;
|
| 131 |
+
align-items: center;
|
| 132 |
+
background-color: var(--sklearn-color-background);
|
| 133 |
+
padding-right: 1em;
|
| 134 |
+
padding-left: 1em;
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
|
| 139 |
+
clickable and can be expanded/collapsed.
|
| 140 |
+
- Pipeline and ColumnTransformer use this feature and define the default style
|
| 141 |
+
- Estimators will overwrite some part of the style using the `sk-estimator` class
|
| 142 |
+
*/
|
| 143 |
+
|
| 144 |
+
/* Pipeline and ColumnTransformer style (default) */
|
| 145 |
+
|
| 146 |
+
#sk-container-id-5 div.sk-toggleable {
|
| 147 |
+
/* Default theme specific background. It is overwritten whether we have a
|
| 148 |
+
specific estimator or a Pipeline/ColumnTransformer */
|
| 149 |
+
background-color: var(--sklearn-color-background);
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
/* Toggleable label */
|
| 153 |
+
#sk-container-id-5 label.sk-toggleable__label {
|
| 154 |
+
cursor: pointer;
|
| 155 |
+
display: block;
|
| 156 |
+
width: 100%;
|
| 157 |
+
margin-bottom: 0;
|
| 158 |
+
padding: 0.5em;
|
| 159 |
+
box-sizing: border-box;
|
| 160 |
+
text-align: center;
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
#sk-container-id-5 label.sk-toggleable__label-arrow:before {
|
| 164 |
+
/* Arrow on the left of the label */
|
| 165 |
+
content: "▸";
|
| 166 |
+
float: left;
|
| 167 |
+
margin-right: 0.25em;
|
| 168 |
+
color: var(--sklearn-color-icon);
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
#sk-container-id-5 label.sk-toggleable__label-arrow:hover:before {
|
| 172 |
+
color: var(--sklearn-color-text);
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
/* Toggleable content - dropdown */
|
| 176 |
+
|
| 177 |
+
#sk-container-id-5 div.sk-toggleable__content {
|
| 178 |
+
max-height: 0;
|
| 179 |
+
max-width: 0;
|
| 180 |
+
overflow: hidden;
|
| 181 |
+
text-align: left;
|
| 182 |
+
/* unfitted */
|
| 183 |
+
background-color: var(--sklearn-color-unfitted-level-0);
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
#sk-container-id-5 div.sk-toggleable__content.fitted {
|
| 187 |
+
/* fitted */
|
| 188 |
+
background-color: var(--sklearn-color-fitted-level-0);
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
#sk-container-id-5 div.sk-toggleable__content pre {
|
| 192 |
+
margin: 0.2em;
|
| 193 |
+
border-radius: 0.25em;
|
| 194 |
+
color: var(--sklearn-color-text);
|
| 195 |
+
/* unfitted */
|
| 196 |
+
background-color: var(--sklearn-color-unfitted-level-0);
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
#sk-container-id-5 div.sk-toggleable__content.fitted pre {
|
| 200 |
+
/* unfitted */
|
| 201 |
+
background-color: var(--sklearn-color-fitted-level-0);
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
#sk-container-id-5 input.sk-toggleable__control:checked~div.sk-toggleable__content {
|
| 205 |
+
/* Expand drop-down */
|
| 206 |
+
max-height: 200px;
|
| 207 |
+
max-width: 100%;
|
| 208 |
+
overflow: auto;
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
#sk-container-id-5 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
|
| 212 |
+
content: "▾";
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
/* Pipeline/ColumnTransformer-specific style */
|
| 216 |
+
|
| 217 |
+
#sk-container-id-5 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 218 |
+
color: var(--sklearn-color-text);
|
| 219 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
#sk-container-id-5 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 223 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
/* Estimator-specific style */
|
| 227 |
+
|
| 228 |
+
/* Colorize estimator box */
|
| 229 |
+
#sk-container-id-5 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 230 |
+
/* unfitted */
|
| 231 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
#sk-container-id-5 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 235 |
+
/* fitted */
|
| 236 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
#sk-container-id-5 div.sk-label label.sk-toggleable__label,
|
| 240 |
+
#sk-container-id-5 div.sk-label label {
|
| 241 |
+
/* The background is the default theme color */
|
| 242 |
+
color: var(--sklearn-color-text-on-default-background);
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
/* On hover, darken the color of the background */
|
| 246 |
+
#sk-container-id-5 div.sk-label:hover label.sk-toggleable__label {
|
| 247 |
+
color: var(--sklearn-color-text);
|
| 248 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
/* Label box, darken color on hover, fitted */
|
| 252 |
+
#sk-container-id-5 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
|
| 253 |
+
color: var(--sklearn-color-text);
|
| 254 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
/* Estimator label */
|
| 258 |
+
|
| 259 |
+
#sk-container-id-5 div.sk-label label {
|
| 260 |
+
font-family: monospace;
|
| 261 |
+
font-weight: bold;
|
| 262 |
+
display: inline-block;
|
| 263 |
+
line-height: 1.2em;
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
#sk-container-id-5 div.sk-label-container {
|
| 267 |
+
text-align: center;
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
/* Estimator-specific */
|
| 271 |
+
#sk-container-id-5 div.sk-estimator {
|
| 272 |
+
font-family: monospace;
|
| 273 |
+
border: 1px dotted var(--sklearn-color-border-box);
|
| 274 |
+
border-radius: 0.25em;
|
| 275 |
+
box-sizing: border-box;
|
| 276 |
+
margin-bottom: 0.5em;
|
| 277 |
+
/* unfitted */
|
| 278 |
+
background-color: var(--sklearn-color-unfitted-level-0);
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
#sk-container-id-5 div.sk-estimator.fitted {
|
| 282 |
+
/* fitted */
|
| 283 |
+
background-color: var(--sklearn-color-fitted-level-0);
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
/* on hover */
|
| 287 |
+
#sk-container-id-5 div.sk-estimator:hover {
|
| 288 |
+
/* unfitted */
|
| 289 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
#sk-container-id-5 div.sk-estimator.fitted:hover {
|
| 293 |
+
/* fitted */
|
| 294 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
/* Specification for estimator info (e.g. "i" and "?") */
|
| 298 |
+
|
| 299 |
+
/* Common style for "i" and "?" */
|
| 300 |
+
|
| 301 |
+
.sk-estimator-doc-link,
|
| 302 |
+
a:link.sk-estimator-doc-link,
|
| 303 |
+
a:visited.sk-estimator-doc-link {
|
| 304 |
+
float: right;
|
| 305 |
+
font-size: smaller;
|
| 306 |
+
line-height: 1em;
|
| 307 |
+
font-family: monospace;
|
| 308 |
+
background-color: var(--sklearn-color-background);
|
| 309 |
+
border-radius: 1em;
|
| 310 |
+
height: 1em;
|
| 311 |
+
width: 1em;
|
| 312 |
+
text-decoration: none !important;
|
| 313 |
+
margin-left: 1ex;
|
| 314 |
+
/* unfitted */
|
| 315 |
+
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
|
| 316 |
+
color: var(--sklearn-color-unfitted-level-1);
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
.sk-estimator-doc-link.fitted,
|
| 320 |
+
a:link.sk-estimator-doc-link.fitted,
|
| 321 |
+
a:visited.sk-estimator-doc-link.fitted {
|
| 322 |
+
/* fitted */
|
| 323 |
+
border: var(--sklearn-color-fitted-level-1) 1pt solid;
|
| 324 |
+
color: var(--sklearn-color-fitted-level-1);
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
/* On hover */
|
| 328 |
+
div.sk-estimator:hover .sk-estimator-doc-link:hover,
|
| 329 |
+
.sk-estimator-doc-link:hover,
|
| 330 |
+
div.sk-label-container:hover .sk-estimator-doc-link:hover,
|
| 331 |
+
.sk-estimator-doc-link:hover {
|
| 332 |
+
/* unfitted */
|
| 333 |
+
background-color: var(--sklearn-color-unfitted-level-3);
|
| 334 |
+
color: var(--sklearn-color-background);
|
| 335 |
+
text-decoration: none;
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
|
| 339 |
+
.sk-estimator-doc-link.fitted:hover,
|
| 340 |
+
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
|
| 341 |
+
.sk-estimator-doc-link.fitted:hover {
|
| 342 |
+
/* fitted */
|
| 343 |
+
background-color: var(--sklearn-color-fitted-level-3);
|
| 344 |
+
color: var(--sklearn-color-background);
|
| 345 |
+
text-decoration: none;
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
/* Span, style for the box shown on hovering the info icon */
|
| 349 |
+
.sk-estimator-doc-link span {
|
| 350 |
+
display: none;
|
| 351 |
+
z-index: 9999;
|
| 352 |
+
position: relative;
|
| 353 |
+
font-weight: normal;
|
| 354 |
+
right: .2ex;
|
| 355 |
+
padding: .5ex;
|
| 356 |
+
margin: .5ex;
|
| 357 |
+
width: min-content;
|
| 358 |
+
min-width: 20ex;
|
| 359 |
+
max-width: 50ex;
|
| 360 |
+
color: var(--sklearn-color-text);
|
| 361 |
+
box-shadow: 2pt 2pt 4pt #999;
|
| 362 |
+
/* unfitted */
|
| 363 |
+
background: var(--sklearn-color-unfitted-level-0);
|
| 364 |
+
border: .5pt solid var(--sklearn-color-unfitted-level-3);
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
.sk-estimator-doc-link.fitted span {
|
| 368 |
+
/* fitted */
|
| 369 |
+
background: var(--sklearn-color-fitted-level-0);
|
| 370 |
+
border: var(--sklearn-color-fitted-level-3);
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
.sk-estimator-doc-link:hover span {
|
| 374 |
+
display: block;
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
/* "?"-specific style due to the `<a>` HTML tag */
|
| 378 |
+
|
| 379 |
+
#sk-container-id-5 a.estimator_doc_link {
|
| 380 |
+
float: right;
|
| 381 |
+
font-size: 1rem;
|
| 382 |
+
line-height: 1em;
|
| 383 |
+
font-family: monospace;
|
| 384 |
+
background-color: var(--sklearn-color-background);
|
| 385 |
+
border-radius: 1rem;
|
| 386 |
+
height: 1rem;
|
| 387 |
+
width: 1rem;
|
| 388 |
+
text-decoration: none;
|
| 389 |
+
/* unfitted */
|
| 390 |
+
color: var(--sklearn-color-unfitted-level-1);
|
| 391 |
+
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
#sk-container-id-5 a.estimator_doc_link.fitted {
|
| 395 |
+
/* fitted */
|
| 396 |
+
border: var(--sklearn-color-fitted-level-1) 1pt solid;
|
| 397 |
+
color: var(--sklearn-color-fitted-level-1);
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
/* On hover */
|
| 401 |
+
#sk-container-id-5 a.estimator_doc_link:hover {
|
| 402 |
+
/* unfitted */
|
| 403 |
+
background-color: var(--sklearn-color-unfitted-level-3);
|
| 404 |
+
color: var(--sklearn-color-background);
|
| 405 |
+
text-decoration: none;
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
#sk-container-id-5 a.estimator_doc_link.fitted:hover {
|
| 409 |
+
/* fitted */
|
| 410 |
+
background-color: var(--sklearn-color-fitted-level-3);
|
| 411 |
+
}
|
| 412 |
+
</style><div id="sk-container-id-5" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestRegressor(max_depth=17)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" checked><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> RandomForestRegressor<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestRegressor.html">?<span>Documentation for RandomForestRegressor</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>RandomForestRegressor(max_depth=17)</pre></div> </div></div></div></div>
|
| 413 |
+
</body>
|
| 414 |
+
</html>
|
| 415 |
+
|
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/metric_info.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
|
| 3 |
+
"root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
|
| 4 |
+
}
|
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/MLmodel
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
artifact_path: model
|
| 2 |
+
flavors:
|
| 3 |
+
python_function:
|
| 4 |
+
env:
|
| 5 |
+
conda: conda.yaml
|
| 6 |
+
virtualenv: python_env.yaml
|
| 7 |
+
loader_module: mlflow.sklearn
|
| 8 |
+
model_path: model.pkl
|
| 9 |
+
predict_fn: predict
|
| 10 |
+
python_version: 3.11.0
|
| 11 |
+
sklearn:
|
| 12 |
+
code: null
|
| 13 |
+
pickled_model: model.pkl
|
| 14 |
+
serialization_format: cloudpickle
|
| 15 |
+
sklearn_version: 1.5.2
|
| 16 |
+
mlflow_version: 2.16.2
|
| 17 |
+
model_size_bytes: 31005013
|
| 18 |
+
model_uuid: 14b114586bf9463db4c497b4508d35ab
|
| 19 |
+
run_id: d6de58a8b1b9445a8da3f306598e1754
|
| 20 |
+
signature:
|
| 21 |
+
inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
|
| 22 |
+
outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1,
|
| 23 |
+
6]}}]'
|
| 24 |
+
params: null
|
| 25 |
+
utc_time_created: '2024-09-29 16:02:11.207015'
|
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/conda.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
channels:
|
| 2 |
+
- conda-forge
|
| 3 |
+
dependencies:
|
| 4 |
+
- python=3.11.0
|
| 5 |
+
- pip<=24.2
|
| 6 |
+
- pip:
|
| 7 |
+
- mlflow==2.16.2
|
| 8 |
+
- cloudpickle==3.0.0
|
| 9 |
+
- numpy==1.26.2
|
| 10 |
+
- pandas==2.2.2
|
| 11 |
+
- psutil==5.9.4
|
| 12 |
+
- scikit-learn==1.5.2
|
| 13 |
+
- scipy==1.11.4
|
| 14 |
+
- typing==3.7.4.3
|
| 15 |
+
name: mlflow-env
|
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1092fd6d474fafb4da32f866f250d60516be40b9d0ea045b3b46670cf1b6a27
|
| 3 |
+
size 31005013
|
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/python_env.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python: 3.11.0
|
| 2 |
+
build_dependencies:
|
| 3 |
+
- pip==24.2
|
| 4 |
+
- setuptools==65.5.0
|
| 5 |
+
- wheel==0.41.2
|
| 6 |
+
dependencies:
|
| 7 |
+
- -r requirements.txt
|
notebooks/mlartifacts/475209732522917118/d6de58a8b1b9445a8da3f306598e1754/artifacts/model/requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.16.2
|
| 2 |
+
cloudpickle==3.0.0
|
| 3 |
+
numpy==1.26.2
|
| 4 |
+
pandas==2.2.2
|
| 5 |
+
psutil==5.9.4
|
| 6 |
+
scikit-learn==1.5.2
|
| 7 |
+
scipy==1.11.4
|
| 8 |
+
typing==3.7.4.3
|
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/estimator.html
ADDED
|
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
<!DOCTYPE html>
|
| 3 |
+
<html lang="en">
|
| 4 |
+
<head>
|
| 5 |
+
<meta charset="UTF-8"/>
|
| 6 |
+
</head>
|
| 7 |
+
<body>
|
| 8 |
+
<style>#sk-container-id-179 {
|
| 9 |
+
/* Definition of color scheme common for light and dark mode */
|
| 10 |
+
--sklearn-color-text: black;
|
| 11 |
+
--sklearn-color-line: gray;
|
| 12 |
+
/* Definition of color scheme for unfitted estimators */
|
| 13 |
+
--sklearn-color-unfitted-level-0: #fff5e6;
|
| 14 |
+
--sklearn-color-unfitted-level-1: #f6e4d2;
|
| 15 |
+
--sklearn-color-unfitted-level-2: #ffe0b3;
|
| 16 |
+
--sklearn-color-unfitted-level-3: chocolate;
|
| 17 |
+
/* Definition of color scheme for fitted estimators */
|
| 18 |
+
--sklearn-color-fitted-level-0: #f0f8ff;
|
| 19 |
+
--sklearn-color-fitted-level-1: #d4ebff;
|
| 20 |
+
--sklearn-color-fitted-level-2: #b3dbfd;
|
| 21 |
+
--sklearn-color-fitted-level-3: cornflowerblue;
|
| 22 |
+
|
| 23 |
+
/* Specific color for light theme */
|
| 24 |
+
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
|
| 25 |
+
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
|
| 26 |
+
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
|
| 27 |
+
--sklearn-color-icon: #696969;
|
| 28 |
+
|
| 29 |
+
@media (prefers-color-scheme: dark) {
|
| 30 |
+
/* Redefinition of color scheme for dark theme */
|
| 31 |
+
--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
|
| 32 |
+
--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
|
| 33 |
+
--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
|
| 34 |
+
--sklearn-color-icon: #878787;
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
#sk-container-id-179 {
|
| 39 |
+
color: var(--sklearn-color-text);
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
#sk-container-id-179 pre {
|
| 43 |
+
padding: 0;
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
#sk-container-id-179 input.sk-hidden--visually {
|
| 47 |
+
border: 0;
|
| 48 |
+
clip: rect(1px 1px 1px 1px);
|
| 49 |
+
clip: rect(1px, 1px, 1px, 1px);
|
| 50 |
+
height: 1px;
|
| 51 |
+
margin: -1px;
|
| 52 |
+
overflow: hidden;
|
| 53 |
+
padding: 0;
|
| 54 |
+
position: absolute;
|
| 55 |
+
width: 1px;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
#sk-container-id-179 div.sk-dashed-wrapped {
|
| 59 |
+
border: 1px dashed var(--sklearn-color-line);
|
| 60 |
+
margin: 0 0.4em 0.5em 0.4em;
|
| 61 |
+
box-sizing: border-box;
|
| 62 |
+
padding-bottom: 0.4em;
|
| 63 |
+
background-color: var(--sklearn-color-background);
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
#sk-container-id-179 div.sk-container {
|
| 67 |
+
/* jupyter's `normalize.less` sets `[hidden] { display: none; }`
|
| 68 |
+
but bootstrap.min.css set `[hidden] { display: none !important; }`
|
| 69 |
+
so we also need the `!important` here to be able to override the
|
| 70 |
+
default hidden behavior on the sphinx rendered scikit-learn.org.
|
| 71 |
+
See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
|
| 72 |
+
display: inline-block !important;
|
| 73 |
+
position: relative;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
#sk-container-id-179 div.sk-text-repr-fallback {
|
| 77 |
+
display: none;
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
div.sk-parallel-item,
|
| 81 |
+
div.sk-serial,
|
| 82 |
+
div.sk-item {
|
| 83 |
+
/* draw centered vertical line to link estimators */
|
| 84 |
+
background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
|
| 85 |
+
background-size: 2px 100%;
|
| 86 |
+
background-repeat: no-repeat;
|
| 87 |
+
background-position: center center;
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
/* Parallel-specific style estimator block */
|
| 91 |
+
|
| 92 |
+
#sk-container-id-179 div.sk-parallel-item::after {
|
| 93 |
+
content: "";
|
| 94 |
+
width: 100%;
|
| 95 |
+
border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
|
| 96 |
+
flex-grow: 1;
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
#sk-container-id-179 div.sk-parallel {
|
| 100 |
+
display: flex;
|
| 101 |
+
align-items: stretch;
|
| 102 |
+
justify-content: center;
|
| 103 |
+
background-color: var(--sklearn-color-background);
|
| 104 |
+
position: relative;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
#sk-container-id-179 div.sk-parallel-item {
|
| 108 |
+
display: flex;
|
| 109 |
+
flex-direction: column;
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
#sk-container-id-179 div.sk-parallel-item:first-child::after {
|
| 113 |
+
align-self: flex-end;
|
| 114 |
+
width: 50%;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
#sk-container-id-179 div.sk-parallel-item:last-child::after {
|
| 118 |
+
align-self: flex-start;
|
| 119 |
+
width: 50%;
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
#sk-container-id-179 div.sk-parallel-item:only-child::after {
|
| 123 |
+
width: 0;
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
/* Serial-specific style estimator block */
|
| 127 |
+
|
| 128 |
+
#sk-container-id-179 div.sk-serial {
|
| 129 |
+
display: flex;
|
| 130 |
+
flex-direction: column;
|
| 131 |
+
align-items: center;
|
| 132 |
+
background-color: var(--sklearn-color-background);
|
| 133 |
+
padding-right: 1em;
|
| 134 |
+
padding-left: 1em;
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
|
| 139 |
+
clickable and can be expanded/collapsed.
|
| 140 |
+
- Pipeline and ColumnTransformer use this feature and define the default style
|
| 141 |
+
- Estimators will overwrite some part of the style using the `sk-estimator` class
|
| 142 |
+
*/
|
| 143 |
+
|
| 144 |
+
/* Pipeline and ColumnTransformer style (default) */
|
| 145 |
+
|
| 146 |
+
#sk-container-id-179 div.sk-toggleable {
|
| 147 |
+
/* Default theme specific background. It is overwritten whether we have a
|
| 148 |
+
specific estimator or a Pipeline/ColumnTransformer */
|
| 149 |
+
background-color: var(--sklearn-color-background);
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
/* Toggleable label */
|
| 153 |
+
#sk-container-id-179 label.sk-toggleable__label {
|
| 154 |
+
cursor: pointer;
|
| 155 |
+
display: block;
|
| 156 |
+
width: 100%;
|
| 157 |
+
margin-bottom: 0;
|
| 158 |
+
padding: 0.5em;
|
| 159 |
+
box-sizing: border-box;
|
| 160 |
+
text-align: center;
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
#sk-container-id-179 label.sk-toggleable__label-arrow:before {
|
| 164 |
+
/* Arrow on the left of the label */
|
| 165 |
+
content: "▸";
|
| 166 |
+
float: left;
|
| 167 |
+
margin-right: 0.25em;
|
| 168 |
+
color: var(--sklearn-color-icon);
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
#sk-container-id-179 label.sk-toggleable__label-arrow:hover:before {
|
| 172 |
+
color: var(--sklearn-color-text);
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
/* Toggleable content - dropdown */
|
| 176 |
+
|
| 177 |
+
#sk-container-id-179 div.sk-toggleable__content {
|
| 178 |
+
max-height: 0;
|
| 179 |
+
max-width: 0;
|
| 180 |
+
overflow: hidden;
|
| 181 |
+
text-align: left;
|
| 182 |
+
/* unfitted */
|
| 183 |
+
background-color: var(--sklearn-color-unfitted-level-0);
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
#sk-container-id-179 div.sk-toggleable__content.fitted {
|
| 187 |
+
/* fitted */
|
| 188 |
+
background-color: var(--sklearn-color-fitted-level-0);
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
#sk-container-id-179 div.sk-toggleable__content pre {
|
| 192 |
+
margin: 0.2em;
|
| 193 |
+
border-radius: 0.25em;
|
| 194 |
+
color: var(--sklearn-color-text);
|
| 195 |
+
/* unfitted */
|
| 196 |
+
background-color: var(--sklearn-color-unfitted-level-0);
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
#sk-container-id-179 div.sk-toggleable__content.fitted pre {
|
| 200 |
+
/* unfitted */
|
| 201 |
+
background-color: var(--sklearn-color-fitted-level-0);
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
#sk-container-id-179 input.sk-toggleable__control:checked~div.sk-toggleable__content {
|
| 205 |
+
/* Expand drop-down */
|
| 206 |
+
max-height: 200px;
|
| 207 |
+
max-width: 100%;
|
| 208 |
+
overflow: auto;
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
#sk-container-id-179 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
|
| 212 |
+
content: "▾";
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
/* Pipeline/ColumnTransformer-specific style */
|
| 216 |
+
|
| 217 |
+
#sk-container-id-179 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 218 |
+
color: var(--sklearn-color-text);
|
| 219 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
#sk-container-id-179 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 223 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
/* Estimator-specific style */
|
| 227 |
+
|
| 228 |
+
/* Colorize estimator box */
|
| 229 |
+
#sk-container-id-179 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 230 |
+
/* unfitted */
|
| 231 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
#sk-container-id-179 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
|
| 235 |
+
/* fitted */
|
| 236 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
#sk-container-id-179 div.sk-label label.sk-toggleable__label,
|
| 240 |
+
#sk-container-id-179 div.sk-label label {
|
| 241 |
+
/* The background is the default theme color */
|
| 242 |
+
color: var(--sklearn-color-text-on-default-background);
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
/* On hover, darken the color of the background */
|
| 246 |
+
#sk-container-id-179 div.sk-label:hover label.sk-toggleable__label {
|
| 247 |
+
color: var(--sklearn-color-text);
|
| 248 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
/* Label box, darken color on hover, fitted */
|
| 252 |
+
#sk-container-id-179 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
|
| 253 |
+
color: var(--sklearn-color-text);
|
| 254 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
/* Estimator label */
|
| 258 |
+
|
| 259 |
+
#sk-container-id-179 div.sk-label label {
|
| 260 |
+
font-family: monospace;
|
| 261 |
+
font-weight: bold;
|
| 262 |
+
display: inline-block;
|
| 263 |
+
line-height: 1.2em;
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
#sk-container-id-179 div.sk-label-container {
|
| 267 |
+
text-align: center;
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
/* Estimator-specific */
|
| 271 |
+
#sk-container-id-179 div.sk-estimator {
|
| 272 |
+
font-family: monospace;
|
| 273 |
+
border: 1px dotted var(--sklearn-color-border-box);
|
| 274 |
+
border-radius: 0.25em;
|
| 275 |
+
box-sizing: border-box;
|
| 276 |
+
margin-bottom: 0.5em;
|
| 277 |
+
/* unfitted */
|
| 278 |
+
background-color: var(--sklearn-color-unfitted-level-0);
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
#sk-container-id-179 div.sk-estimator.fitted {
|
| 282 |
+
/* fitted */
|
| 283 |
+
background-color: var(--sklearn-color-fitted-level-0);
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
/* on hover */
|
| 287 |
+
#sk-container-id-179 div.sk-estimator:hover {
|
| 288 |
+
/* unfitted */
|
| 289 |
+
background-color: var(--sklearn-color-unfitted-level-2);
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
#sk-container-id-179 div.sk-estimator.fitted:hover {
|
| 293 |
+
/* fitted */
|
| 294 |
+
background-color: var(--sklearn-color-fitted-level-2);
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
/* Specification for estimator info (e.g. "i" and "?") */
|
| 298 |
+
|
| 299 |
+
/* Common style for "i" and "?" */
|
| 300 |
+
|
| 301 |
+
.sk-estimator-doc-link,
|
| 302 |
+
a:link.sk-estimator-doc-link,
|
| 303 |
+
a:visited.sk-estimator-doc-link {
|
| 304 |
+
float: right;
|
| 305 |
+
font-size: smaller;
|
| 306 |
+
line-height: 1em;
|
| 307 |
+
font-family: monospace;
|
| 308 |
+
background-color: var(--sklearn-color-background);
|
| 309 |
+
border-radius: 1em;
|
| 310 |
+
height: 1em;
|
| 311 |
+
width: 1em;
|
| 312 |
+
text-decoration: none !important;
|
| 313 |
+
margin-left: 1ex;
|
| 314 |
+
/* unfitted */
|
| 315 |
+
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
|
| 316 |
+
color: var(--sklearn-color-unfitted-level-1);
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
.sk-estimator-doc-link.fitted,
|
| 320 |
+
a:link.sk-estimator-doc-link.fitted,
|
| 321 |
+
a:visited.sk-estimator-doc-link.fitted {
|
| 322 |
+
/* fitted */
|
| 323 |
+
border: var(--sklearn-color-fitted-level-1) 1pt solid;
|
| 324 |
+
color: var(--sklearn-color-fitted-level-1);
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
/* On hover */
|
| 328 |
+
div.sk-estimator:hover .sk-estimator-doc-link:hover,
|
| 329 |
+
.sk-estimator-doc-link:hover,
|
| 330 |
+
div.sk-label-container:hover .sk-estimator-doc-link:hover,
|
| 331 |
+
.sk-estimator-doc-link:hover {
|
| 332 |
+
/* unfitted */
|
| 333 |
+
background-color: var(--sklearn-color-unfitted-level-3);
|
| 334 |
+
color: var(--sklearn-color-background);
|
| 335 |
+
text-decoration: none;
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
|
| 339 |
+
.sk-estimator-doc-link.fitted:hover,
|
| 340 |
+
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
|
| 341 |
+
.sk-estimator-doc-link.fitted:hover {
|
| 342 |
+
/* fitted */
|
| 343 |
+
background-color: var(--sklearn-color-fitted-level-3);
|
| 344 |
+
color: var(--sklearn-color-background);
|
| 345 |
+
text-decoration: none;
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
/* Span, style for the box shown on hovering the info icon */
|
| 349 |
+
.sk-estimator-doc-link span {
|
| 350 |
+
display: none;
|
| 351 |
+
z-index: 9999;
|
| 352 |
+
position: relative;
|
| 353 |
+
font-weight: normal;
|
| 354 |
+
right: .2ex;
|
| 355 |
+
padding: .5ex;
|
| 356 |
+
margin: .5ex;
|
| 357 |
+
width: min-content;
|
| 358 |
+
min-width: 20ex;
|
| 359 |
+
max-width: 50ex;
|
| 360 |
+
color: var(--sklearn-color-text);
|
| 361 |
+
box-shadow: 2pt 2pt 4pt #999;
|
| 362 |
+
/* unfitted */
|
| 363 |
+
background: var(--sklearn-color-unfitted-level-0);
|
| 364 |
+
border: .5pt solid var(--sklearn-color-unfitted-level-3);
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
.sk-estimator-doc-link.fitted span {
|
| 368 |
+
/* fitted */
|
| 369 |
+
background: var(--sklearn-color-fitted-level-0);
|
| 370 |
+
border: var(--sklearn-color-fitted-level-3);
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
.sk-estimator-doc-link:hover span {
|
| 374 |
+
display: block;
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
/* "?"-specific style due to the `<a>` HTML tag */
|
| 378 |
+
|
| 379 |
+
#sk-container-id-179 a.estimator_doc_link {
|
| 380 |
+
float: right;
|
| 381 |
+
font-size: 1rem;
|
| 382 |
+
line-height: 1em;
|
| 383 |
+
font-family: monospace;
|
| 384 |
+
background-color: var(--sklearn-color-background);
|
| 385 |
+
border-radius: 1rem;
|
| 386 |
+
height: 1rem;
|
| 387 |
+
width: 1rem;
|
| 388 |
+
text-decoration: none;
|
| 389 |
+
/* unfitted */
|
| 390 |
+
color: var(--sklearn-color-unfitted-level-1);
|
| 391 |
+
border: var(--sklearn-color-unfitted-level-1) 1pt solid;
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
#sk-container-id-179 a.estimator_doc_link.fitted {
|
| 395 |
+
/* fitted */
|
| 396 |
+
border: var(--sklearn-color-fitted-level-1) 1pt solid;
|
| 397 |
+
color: var(--sklearn-color-fitted-level-1);
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
/* On hover */
|
| 401 |
+
#sk-container-id-179 a.estimator_doc_link:hover {
|
| 402 |
+
/* unfitted */
|
| 403 |
+
background-color: var(--sklearn-color-unfitted-level-3);
|
| 404 |
+
color: var(--sklearn-color-background);
|
| 405 |
+
text-decoration: none;
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
#sk-container-id-179 a.estimator_doc_link.fitted:hover {
|
| 409 |
+
/* fitted */
|
| 410 |
+
background-color: var(--sklearn-color-fitted-level-3);
|
| 411 |
+
}
|
| 412 |
+
</style><div id="sk-container-id-179" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestRegressor(max_depth=15)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-179" type="checkbox" checked><label for="sk-estimator-id-179" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> RandomForestRegressor<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestRegressor.html">?<span>Documentation for RandomForestRegressor</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>RandomForestRegressor(max_depth=15)</pre></div> </div></div></div></div>
|
| 413 |
+
</body>
|
| 414 |
+
</html>
|
| 415 |
+
|
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/metric_info.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
|
| 3 |
+
"root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
|
| 4 |
+
}
|
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/MLmodel
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
artifact_path: model
|
| 2 |
+
flavors:
|
| 3 |
+
python_function:
|
| 4 |
+
env:
|
| 5 |
+
conda: conda.yaml
|
| 6 |
+
virtualenv: python_env.yaml
|
| 7 |
+
loader_module: mlflow.sklearn
|
| 8 |
+
model_path: model.pkl
|
| 9 |
+
predict_fn: predict
|
| 10 |
+
python_version: 3.11.0
|
| 11 |
+
sklearn:
|
| 12 |
+
code: null
|
| 13 |
+
pickled_model: model.pkl
|
| 14 |
+
serialization_format: cloudpickle
|
| 15 |
+
sklearn_version: 1.5.2
|
| 16 |
+
mlflow_version: 2.16.2
|
| 17 |
+
model_size_bytes: 27144373
|
| 18 |
+
model_uuid: 56947e681896418498166a990e508991
|
| 19 |
+
run_id: e8a145a55c094cdc9e55c7b9d5a89bf5
|
| 20 |
+
signature:
|
| 21 |
+
inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
|
| 22 |
+
outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1,
|
| 23 |
+
6]}}]'
|
| 24 |
+
params: null
|
| 25 |
+
utc_time_created: '2024-09-29 14:04:08.170828'
|
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/conda.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
channels:
|
| 2 |
+
- conda-forge
|
| 3 |
+
dependencies:
|
| 4 |
+
- python=3.11.0
|
| 5 |
+
- pip<=24.2
|
| 6 |
+
- pip:
|
| 7 |
+
- mlflow==2.16.2
|
| 8 |
+
- cloudpickle==3.0.0
|
| 9 |
+
- numpy==1.26.2
|
| 10 |
+
- pandas==2.2.2
|
| 11 |
+
- psutil==5.9.4
|
| 12 |
+
- scikit-learn==1.5.2
|
| 13 |
+
- scipy==1.11.4
|
| 14 |
+
- typing==3.7.4.3
|
| 15 |
+
name: mlflow-env
|
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a6f7ccc9cdf95b931a1c4f302f52e9af0a41e5680a366036918942c14385695d
|
| 3 |
+
size 27144373
|
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/python_env.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python: 3.11.0
|
| 2 |
+
build_dependencies:
|
| 3 |
+
- pip==24.2
|
| 4 |
+
- setuptools==65.5.0
|
| 5 |
+
- wheel==0.41.2
|
| 6 |
+
dependencies:
|
| 7 |
+
- -r requirements.txt
|
notebooks/mlartifacts/475209732522917118/e8a145a55c094cdc9e55c7b9d5a89bf5/artifacts/model/requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.16.2
|
| 2 |
+
cloudpickle==3.0.0
|
| 3 |
+
numpy==1.26.2
|
| 4 |
+
pandas==2.2.2
|
| 5 |
+
psutil==5.9.4
|
| 6 |
+
scikit-learn==1.5.2
|
| 7 |
+
scipy==1.11.4
|
| 8 |
+
typing==3.7.4.3
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"f0": 29615.0, "f1": 11292.0, "f2": 8414.0, "f3": 5616.0, "f4": 7293.0, "f5": 7162.0, "f6": 5658.0, "f7": 5612.0, "f8": 3015.0, "f9": 3550.0, "f10": 5736.0, "f11": 4344.0, "f12": 3494.0, "f13": 3455.0, "f14": 2640.0, "f15": 3343.0, "f16": 3822.0, "f17": 3907.0, "f18": 3711.0, "f19": 2348.0, "f20": 2573.0, "f21": 4049.0, "f22": 3880.0, "f23": 3365.0, "f24": 3270.0, "f25": 2622.0, "f26": 2991.0, "f27": 3360.0, "f28": 3550.0, "f29": 3543.0, "f30": 2197.0, "f31": 2237.0, "f32": 3702.0}
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/feature_importance_weight.png
ADDED
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/metric_info.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
|
| 3 |
+
"root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
|
| 4 |
+
}
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/MLmodel
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
artifact_path: model
|
| 2 |
+
flavors:
|
| 3 |
+
python_function:
|
| 4 |
+
data: model.xgb
|
| 5 |
+
env:
|
| 6 |
+
conda: conda.yaml
|
| 7 |
+
virtualenv: python_env.yaml
|
| 8 |
+
loader_module: mlflow.xgboost
|
| 9 |
+
python_version: 3.11.0
|
| 10 |
+
xgboost:
|
| 11 |
+
code: null
|
| 12 |
+
data: model.xgb
|
| 13 |
+
model_class: xgboost.sklearn.XGBRegressor
|
| 14 |
+
model_format: xgb
|
| 15 |
+
xgb_version: 2.1.1
|
| 16 |
+
mlflow_version: 2.16.2
|
| 17 |
+
model_size_bytes: 11660654
|
| 18 |
+
model_uuid: 3ba468a8c7f44dc18fe6561fc452fc93
|
| 19 |
+
run_id: 29a7ce3e5aff4004b017460bf6d2274b
|
| 20 |
+
signature:
|
| 21 |
+
inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
|
| 22 |
+
outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
|
| 23 |
+
6]}}]'
|
| 24 |
+
params: null
|
| 25 |
+
utc_time_created: '2024-09-29 16:10:49.744301'
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/conda.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
channels:
|
| 2 |
+
- conda-forge
|
| 3 |
+
dependencies:
|
| 4 |
+
- python=3.11.0
|
| 5 |
+
- pip<=24.2
|
| 6 |
+
- pip:
|
| 7 |
+
- mlflow==2.16.2
|
| 8 |
+
- numpy==1.26.2
|
| 9 |
+
- pandas==2.2.2
|
| 10 |
+
- psutil==5.9.4
|
| 11 |
+
- scikit-learn==1.5.2
|
| 12 |
+
- scipy==1.11.4
|
| 13 |
+
- typing==3.7.4.3
|
| 14 |
+
- xgboost==2.1.1
|
| 15 |
+
name: mlflow-env
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/model.xgb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e66c019d2c5ad70910dca6fe39fbed43695be2d1b5871084c3a8aef52725c245
|
| 3 |
+
size 11660654
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/python_env.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python: 3.11.0
|
| 2 |
+
build_dependencies:
|
| 3 |
+
- pip==24.2
|
| 4 |
+
- setuptools==65.5.0
|
| 5 |
+
- wheel==0.41.2
|
| 6 |
+
dependencies:
|
| 7 |
+
- -r requirements.txt
|
notebooks/mlartifacts/588532547813609546/29a7ce3e5aff4004b017460bf6d2274b/artifacts/model/requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.16.2
|
| 2 |
+
numpy==1.26.2
|
| 3 |
+
pandas==2.2.2
|
| 4 |
+
psutil==5.9.4
|
| 5 |
+
scikit-learn==1.5.2
|
| 6 |
+
scipy==1.11.4
|
| 7 |
+
typing==3.7.4.3
|
| 8 |
+
xgboost==2.1.1
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"f0": 29615.0, "f1": 11292.0, "f2": 8414.0, "f3": 5616.0, "f4": 7293.0, "f5": 7162.0, "f6": 5658.0, "f7": 5612.0, "f8": 3015.0, "f9": 3550.0, "f10": 5736.0, "f11": 4344.0, "f12": 3494.0, "f13": 3455.0, "f14": 2640.0, "f15": 3343.0, "f16": 3822.0, "f17": 3907.0, "f18": 3711.0, "f19": 2348.0, "f20": 2573.0, "f21": 4049.0, "f22": 3880.0, "f23": 3365.0, "f24": 3270.0, "f25": 2622.0, "f26": 2991.0, "f27": 3360.0, "f28": 3550.0, "f29": 3543.0, "f30": 2197.0, "f31": 2237.0, "f32": 3702.0}
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/feature_importance_weight.png
ADDED
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/metric_info.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mean_squared_error_unknown_dataset": "mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)",
|
| 3 |
+
"root_mean_squared_error_unknown_dataset": "root_mean_squared_error(y_true=<ndarray>, y_pred=<ndarray>)"
|
| 4 |
+
}
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/MLmodel
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
artifact_path: model
|
| 2 |
+
flavors:
|
| 3 |
+
python_function:
|
| 4 |
+
data: model.xgb
|
| 5 |
+
env:
|
| 6 |
+
conda: conda.yaml
|
| 7 |
+
virtualenv: python_env.yaml
|
| 8 |
+
loader_module: mlflow.xgboost
|
| 9 |
+
python_version: 3.11.0
|
| 10 |
+
xgboost:
|
| 11 |
+
code: null
|
| 12 |
+
data: model.xgb
|
| 13 |
+
model_class: xgboost.sklearn.XGBRegressor
|
| 14 |
+
model_format: xgb
|
| 15 |
+
xgb_version: 2.1.1
|
| 16 |
+
mlflow_version: 2.16.2
|
| 17 |
+
model_size_bytes: 11660654
|
| 18 |
+
model_uuid: 283a41e11ba04ccab1f3995d5a820c21
|
| 19 |
+
run_id: 4e8ce91d81c549cf80846c249e959c20
|
| 20 |
+
signature:
|
| 21 |
+
inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
|
| 22 |
+
outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
|
| 23 |
+
6]}}]'
|
| 24 |
+
params: null
|
| 25 |
+
utc_time_created: '2024-09-29 16:13:38.960625'
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/conda.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
channels:
|
| 2 |
+
- conda-forge
|
| 3 |
+
dependencies:
|
| 4 |
+
- python=3.11.0
|
| 5 |
+
- pip<=24.2
|
| 6 |
+
- pip:
|
| 7 |
+
- mlflow==2.16.2
|
| 8 |
+
- numpy==1.26.2
|
| 9 |
+
- pandas==2.2.2
|
| 10 |
+
- psutil==5.9.4
|
| 11 |
+
- scikit-learn==1.5.2
|
| 12 |
+
- scipy==1.11.4
|
| 13 |
+
- typing==3.7.4.3
|
| 14 |
+
- xgboost==2.1.1
|
| 15 |
+
name: mlflow-env
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/model.xgb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e66c019d2c5ad70910dca6fe39fbed43695be2d1b5871084c3a8aef52725c245
|
| 3 |
+
size 11660654
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/python_env.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python: 3.11.0
|
| 2 |
+
build_dependencies:
|
| 3 |
+
- pip==24.2
|
| 4 |
+
- setuptools==65.5.0
|
| 5 |
+
- wheel==0.41.2
|
| 6 |
+
dependencies:
|
| 7 |
+
- -r requirements.txt
|
notebooks/mlartifacts/588532547813609546/4e8ce91d81c549cf80846c249e959c20/artifacts/model/requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.16.2
|
| 2 |
+
numpy==1.26.2
|
| 3 |
+
pandas==2.2.2
|
| 4 |
+
psutil==5.9.4
|
| 5 |
+
scikit-learn==1.5.2
|
| 6 |
+
scipy==1.11.4
|
| 7 |
+
typing==3.7.4.3
|
| 8 |
+
xgboost==2.1.1
|
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/MLmodel
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
artifact_path: best_model
|
| 2 |
+
flavors:
|
| 3 |
+
python_function:
|
| 4 |
+
env:
|
| 5 |
+
conda: conda.yaml
|
| 6 |
+
virtualenv: python_env.yaml
|
| 7 |
+
loader_module: mlflow.sklearn
|
| 8 |
+
model_path: model.pkl
|
| 9 |
+
predict_fn: predict
|
| 10 |
+
python_version: 3.11.0
|
| 11 |
+
sklearn:
|
| 12 |
+
code: null
|
| 13 |
+
pickled_model: model.pkl
|
| 14 |
+
serialization_format: cloudpickle
|
| 15 |
+
sklearn_version: 1.5.2
|
| 16 |
+
mlflow_version: 2.16.2
|
| 17 |
+
model_size_bytes: 11407821
|
| 18 |
+
model_uuid: 5cb54f6260b84fa29d75b2e6afba3f99
|
| 19 |
+
run_id: f8998a2203ac4d6bacfa9e2fe9e15a2a
|
| 20 |
+
saved_input_example_info:
|
| 21 |
+
artifact_path: input_example.json
|
| 22 |
+
serving_input_path: serving_input_example.json
|
| 23 |
+
type: ndarray
|
| 24 |
+
signature:
|
| 25 |
+
inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
|
| 26 |
+
outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
|
| 27 |
+
6]}}]'
|
| 28 |
+
params: null
|
| 29 |
+
utc_time_created: '2024-09-29 13:58:12.617369'
|
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/conda.yaml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
channels:
|
| 2 |
+
- conda-forge
|
| 3 |
+
dependencies:
|
| 4 |
+
- python=3.11.0
|
| 5 |
+
- pip<=24.2
|
| 6 |
+
- pip:
|
| 7 |
+
- mlflow==2.16.2
|
| 8 |
+
- cloudpickle==3.0.0
|
| 9 |
+
- numpy==1.26.2
|
| 10 |
+
- pandas==2.2.2
|
| 11 |
+
- psutil==5.9.4
|
| 12 |
+
- scikit-learn==1.5.2
|
| 13 |
+
- scipy==1.11.4
|
| 14 |
+
- typing==3.7.4.3
|
| 15 |
+
- xgboost==2.1.1
|
| 16 |
+
name: mlflow-env
|
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/input_example.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[[0.1383647798742138, 0.074074074074074, 0.3113207547169811, 0.064516129032258, 0.6015831134564643, 0.6025236593059935, 0.5384615384615385, 0.5291806958473626, 0.0245398773006134, 0.1299638989169675, 0.0472616068946344, 0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655], [0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941], [0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949], [0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613], [0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613, 0.2578616352201258, 0.0493827160493827, 0.1981132075471698, 0.064516129032258, 0.6912928759894458, 0.8675078864353312, 0.265934065934066, 0.5830527497194165, 0.0224948875255623, 0.1299638989169675, 0.9043647484014457]]
|
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd12651826ab18510858b44d343835b7c672f3da49f08c102cf0fb6b03c9813c
|
| 3 |
+
size 11400063
|
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/python_env.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python: 3.11.0
|
| 2 |
+
build_dependencies:
|
| 3 |
+
- pip==24.2
|
| 4 |
+
- setuptools==65.5.0
|
| 5 |
+
- wheel==0.41.2
|
| 6 |
+
dependencies:
|
| 7 |
+
- -r requirements.txt
|
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.16.2
|
| 2 |
+
cloudpickle==3.0.0
|
| 3 |
+
numpy==1.26.2
|
| 4 |
+
pandas==2.2.2
|
| 5 |
+
psutil==5.9.4
|
| 6 |
+
scikit-learn==1.5.2
|
| 7 |
+
scipy==1.11.4
|
| 8 |
+
typing==3.7.4.3
|
| 9 |
+
xgboost==2.1.1
|
notebooks/mlartifacts/588532547813609546/f8998a2203ac4d6bacfa9e2fe9e15a2a/artifacts/best_model/serving_input_example.json
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"inputs": [
|
| 3 |
+
[
|
| 4 |
+
0.1383647798742138,
|
| 5 |
+
0.074074074074074,
|
| 6 |
+
0.3113207547169811,
|
| 7 |
+
0.064516129032258,
|
| 8 |
+
0.6015831134564643,
|
| 9 |
+
0.6025236593059935,
|
| 10 |
+
0.5384615384615385,
|
| 11 |
+
0.5291806958473626,
|
| 12 |
+
0.0245398773006134,
|
| 13 |
+
0.1299638989169675,
|
| 14 |
+
0.0472616068946344,
|
| 15 |
+
0.1823899371069182,
|
| 16 |
+
0.1604938271604938,
|
| 17 |
+
0.1698113207547169,
|
| 18 |
+
0.2258064516129032,
|
| 19 |
+
0.6332453825857519,
|
| 20 |
+
0.5536277602523658,
|
| 21 |
+
0.7318681318681319,
|
| 22 |
+
0.7530864197530865,
|
| 23 |
+
0.0,
|
| 24 |
+
0.0649819494584837,
|
| 25 |
+
0.0005560189046427,
|
| 26 |
+
0.3144654088050315,
|
| 27 |
+
0.1358024691358024,
|
| 28 |
+
0.4056603773584905,
|
| 29 |
+
0.0967741935483871,
|
| 30 |
+
0.5936675461741424,
|
| 31 |
+
0.8028391167192428,
|
| 32 |
+
0.1912087912087912,
|
| 33 |
+
0.6315937149270483,
|
| 34 |
+
0.0265848670756646,
|
| 35 |
+
0.259927797833935,
|
| 36 |
+
0.5535168195718655
|
| 37 |
+
],
|
| 38 |
+
[
|
| 39 |
+
0.1823899371069182,
|
| 40 |
+
0.1604938271604938,
|
| 41 |
+
0.1698113207547169,
|
| 42 |
+
0.2258064516129032,
|
| 43 |
+
0.6332453825857519,
|
| 44 |
+
0.5536277602523658,
|
| 45 |
+
0.7318681318681319,
|
| 46 |
+
0.7530864197530865,
|
| 47 |
+
0.0,
|
| 48 |
+
0.0649819494584837,
|
| 49 |
+
0.0005560189046427,
|
| 50 |
+
0.3144654088050315,
|
| 51 |
+
0.1358024691358024,
|
| 52 |
+
0.4056603773584905,
|
| 53 |
+
0.0967741935483871,
|
| 54 |
+
0.5936675461741424,
|
| 55 |
+
0.8028391167192428,
|
| 56 |
+
0.1912087912087912,
|
| 57 |
+
0.6315937149270483,
|
| 58 |
+
0.0265848670756646,
|
| 59 |
+
0.259927797833935,
|
| 60 |
+
0.5535168195718655,
|
| 61 |
+
0.3207547169811321,
|
| 62 |
+
0.2345679012345679,
|
| 63 |
+
0.3584905660377358,
|
| 64 |
+
0.032258064516129,
|
| 65 |
+
0.7308707124010553,
|
| 66 |
+
0.6640378548895898,
|
| 67 |
+
0.2483516483516483,
|
| 68 |
+
0.7463524130190798,
|
| 69 |
+
0.0040899795501022,
|
| 70 |
+
0.1299638989169675,
|
| 71 |
+
0.2730052821795941
|
| 72 |
+
],
|
| 73 |
+
[
|
| 74 |
+
0.3144654088050315,
|
| 75 |
+
0.1358024691358024,
|
| 76 |
+
0.4056603773584905,
|
| 77 |
+
0.0967741935483871,
|
| 78 |
+
0.5936675461741424,
|
| 79 |
+
0.8028391167192428,
|
| 80 |
+
0.1912087912087912,
|
| 81 |
+
0.6315937149270483,
|
| 82 |
+
0.0265848670756646,
|
| 83 |
+
0.259927797833935,
|
| 84 |
+
0.5535168195718655,
|
| 85 |
+
0.3207547169811321,
|
| 86 |
+
0.2345679012345679,
|
| 87 |
+
0.3584905660377358,
|
| 88 |
+
0.032258064516129,
|
| 89 |
+
0.7308707124010553,
|
| 90 |
+
0.6640378548895898,
|
| 91 |
+
0.2483516483516483,
|
| 92 |
+
0.7463524130190798,
|
| 93 |
+
0.0040899795501022,
|
| 94 |
+
0.1299638989169675,
|
| 95 |
+
0.2730052821795941,
|
| 96 |
+
0.3018867924528302,
|
| 97 |
+
0.1234567901234567,
|
| 98 |
+
0.2547169811320754,
|
| 99 |
+
0.1290322580645161,
|
| 100 |
+
0.7678100263852242,
|
| 101 |
+
0.6529968454258674,
|
| 102 |
+
0.276923076923077,
|
| 103 |
+
0.5120650953984288,
|
| 104 |
+
0.130879345603272,
|
| 105 |
+
0.3898916967509025,
|
| 106 |
+
0.2288017792604949
|
| 107 |
+
],
|
| 108 |
+
[
|
| 109 |
+
0.3207547169811321,
|
| 110 |
+
0.2345679012345679,
|
| 111 |
+
0.3584905660377358,
|
| 112 |
+
0.032258064516129,
|
| 113 |
+
0.7308707124010553,
|
| 114 |
+
0.6640378548895898,
|
| 115 |
+
0.2483516483516483,
|
| 116 |
+
0.7463524130190798,
|
| 117 |
+
0.0040899795501022,
|
| 118 |
+
0.1299638989169675,
|
| 119 |
+
0.2730052821795941,
|
| 120 |
+
0.3018867924528302,
|
| 121 |
+
0.1234567901234567,
|
| 122 |
+
0.2547169811320754,
|
| 123 |
+
0.1290322580645161,
|
| 124 |
+
0.7678100263852242,
|
| 125 |
+
0.6529968454258674,
|
| 126 |
+
0.276923076923077,
|
| 127 |
+
0.5120650953984288,
|
| 128 |
+
0.130879345603272,
|
| 129 |
+
0.3898916967509025,
|
| 130 |
+
0.2288017792604949,
|
| 131 |
+
0.289308176100629,
|
| 132 |
+
0.0987654320987654,
|
| 133 |
+
0.1792452830188679,
|
| 134 |
+
0.0967741935483871,
|
| 135 |
+
0.7546174142480211,
|
| 136 |
+
0.7807570977917981,
|
| 137 |
+
0.2395604395604395,
|
| 138 |
+
0.457351290684624,
|
| 139 |
+
0.0020449897750511,
|
| 140 |
+
0.0649819494584837,
|
| 141 |
+
0.0567139282735613
|
| 142 |
+
],
|
| 143 |
+
[
|
| 144 |
+
0.3018867924528302,
|
| 145 |
+
0.1234567901234567,
|
| 146 |
+
0.2547169811320754,
|
| 147 |
+
0.1290322580645161,
|
| 148 |
+
0.7678100263852242,
|
| 149 |
+
0.6529968454258674,
|
| 150 |
+
0.276923076923077,
|
| 151 |
+
0.5120650953984288,
|
| 152 |
+
0.130879345603272,
|
| 153 |
+
0.3898916967509025,
|
| 154 |
+
0.2288017792604949,
|
| 155 |
+
0.289308176100629,
|
| 156 |
+
0.0987654320987654,
|
| 157 |
+
0.1792452830188679,
|
| 158 |
+
0.0967741935483871,
|
| 159 |
+
0.7546174142480211,
|
| 160 |
+
0.7807570977917981,
|
| 161 |
+
0.2395604395604395,
|
| 162 |
+
0.457351290684624,
|
| 163 |
+
0.0020449897750511,
|
| 164 |
+
0.0649819494584837,
|
| 165 |
+
0.0567139282735613,
|
| 166 |
+
0.2578616352201258,
|
| 167 |
+
0.0493827160493827,
|
| 168 |
+
0.1981132075471698,
|
| 169 |
+
0.064516129032258,
|
| 170 |
+
0.6912928759894458,
|
| 171 |
+
0.8675078864353312,
|
| 172 |
+
0.265934065934066,
|
| 173 |
+
0.5830527497194165,
|
| 174 |
+
0.0224948875255623,
|
| 175 |
+
0.1299638989169675,
|
| 176 |
+
0.9043647484014457
|
| 177 |
+
]
|
| 178 |
+
]
|
| 179 |
+
}
|
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/MLmodel
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
artifact_path: best_model
|
| 2 |
+
flavors:
|
| 3 |
+
python_function:
|
| 4 |
+
env:
|
| 5 |
+
conda: conda.yaml
|
| 6 |
+
virtualenv: python_env.yaml
|
| 7 |
+
loader_module: mlflow.sklearn
|
| 8 |
+
model_path: model.pkl
|
| 9 |
+
predict_fn: predict
|
| 10 |
+
python_version: 3.11.0
|
| 11 |
+
sklearn:
|
| 12 |
+
code: null
|
| 13 |
+
pickled_model: model.pkl
|
| 14 |
+
serialization_format: cloudpickle
|
| 15 |
+
sklearn_version: 1.5.2
|
| 16 |
+
mlflow_version: 2.16.2
|
| 17 |
+
model_size_bytes: 11407815
|
| 18 |
+
model_uuid: 751117a69bb044bbac47f376adec2200
|
| 19 |
+
run_id: fcc0e9c35f1a4a88a44f203406bf3ccd
|
| 20 |
+
saved_input_example_info:
|
| 21 |
+
artifact_path: input_example.json
|
| 22 |
+
serving_input_path: serving_input_example.json
|
| 23 |
+
type: ndarray
|
| 24 |
+
signature:
|
| 25 |
+
inputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 33]}}]'
|
| 26 |
+
outputs: '[{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1,
|
| 27 |
+
6]}}]'
|
| 28 |
+
params: null
|
| 29 |
+
utc_time_created: '2024-09-29 13:49:44.291808'
|
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/conda.yaml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
channels:
|
| 2 |
+
- conda-forge
|
| 3 |
+
dependencies:
|
| 4 |
+
- python=3.11.0
|
| 5 |
+
- pip<=24.2
|
| 6 |
+
- pip:
|
| 7 |
+
- mlflow==2.16.2
|
| 8 |
+
- cloudpickle==3.0.0
|
| 9 |
+
- numpy==1.26.2
|
| 10 |
+
- pandas==2.2.2
|
| 11 |
+
- psutil==5.9.4
|
| 12 |
+
- scikit-learn==1.5.2
|
| 13 |
+
- scipy==1.11.4
|
| 14 |
+
- typing==3.7.4.3
|
| 15 |
+
- xgboost==2.1.1
|
| 16 |
+
name: mlflow-env
|
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/input_example.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[[0.1383647798742138, 0.074074074074074, 0.3113207547169811, 0.064516129032258, 0.6015831134564643, 0.6025236593059935, 0.5384615384615385, 0.5291806958473626, 0.0245398773006134, 0.1299638989169675, 0.0472616068946344, 0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655], [0.1823899371069182, 0.1604938271604938, 0.1698113207547169, 0.2258064516129032, 0.6332453825857519, 0.5536277602523658, 0.7318681318681319, 0.7530864197530865, 0.0, 0.0649819494584837, 0.0005560189046427, 0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941], [0.3144654088050315, 0.1358024691358024, 0.4056603773584905, 0.0967741935483871, 0.5936675461741424, 0.8028391167192428, 0.1912087912087912, 0.6315937149270483, 0.0265848670756646, 0.259927797833935, 0.5535168195718655, 0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949], [0.3207547169811321, 0.2345679012345679, 0.3584905660377358, 0.032258064516129, 0.7308707124010553, 0.6640378548895898, 0.2483516483516483, 0.7463524130190798, 0.0040899795501022, 0.1299638989169675, 0.2730052821795941, 0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613], [0.3018867924528302, 0.1234567901234567, 0.2547169811320754, 0.1290322580645161, 0.7678100263852242, 0.6529968454258674, 0.276923076923077, 0.5120650953984288, 0.130879345603272, 0.3898916967509025, 0.2288017792604949, 0.289308176100629, 0.0987654320987654, 0.1792452830188679, 0.0967741935483871, 0.7546174142480211, 0.7807570977917981, 0.2395604395604395, 0.457351290684624, 0.0020449897750511, 0.0649819494584837, 0.0567139282735613, 0.2578616352201258, 0.0493827160493827, 0.1981132075471698, 0.064516129032258, 0.6912928759894458, 0.8675078864353312, 0.265934065934066, 0.5830527497194165, 0.0224948875255623, 0.1299638989169675, 0.9043647484014457]]
|
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7347f2f3ad2a8b185248e534e5b3c562aee728d94c9b03ebc280d1fc65eb562e
|
| 3 |
+
size 11400057
|
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/python_env.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python: 3.11.0
|
| 2 |
+
build_dependencies:
|
| 3 |
+
- pip==24.2
|
| 4 |
+
- setuptools==65.5.0
|
| 5 |
+
- wheel==0.41.2
|
| 6 |
+
dependencies:
|
| 7 |
+
- -r requirements.txt
|
notebooks/mlartifacts/588532547813609546/fcc0e9c35f1a4a88a44f203406bf3ccd/artifacts/best_model/requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.16.2
|
| 2 |
+
cloudpickle==3.0.0
|
| 3 |
+
numpy==1.26.2
|
| 4 |
+
pandas==2.2.2
|
| 5 |
+
psutil==5.9.4
|
| 6 |
+
scikit-learn==1.5.2
|
| 7 |
+
scipy==1.11.4
|
| 8 |
+
typing==3.7.4.3
|
| 9 |
+
xgboost==2.1.1
|