Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
import spaces
|
| 5 |
|
|
@@ -14,31 +14,43 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 14 |
)
|
| 15 |
|
| 16 |
@spaces.GPU
|
| 17 |
-
def
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
do_sample=True,
|
| 33 |
-
temperature=temperature,
|
| 34 |
top_p=top_p,
|
|
|
|
|
|
|
| 35 |
)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
# Настройка интерфейса Gradio
|
| 43 |
iface = gr.ChatInterface(
|
| 44 |
predict,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 3 |
import torch
|
| 4 |
import spaces
|
| 5 |
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
@spaces.GPU
|
| 17 |
+
def generate(
|
| 18 |
+
message: str,
|
| 19 |
+
chat_history: list[tuple[str, str]],
|
| 20 |
+
max_new_tokens: int = 1024,
|
| 21 |
+
temperature: float = 0.6,
|
| 22 |
+
top_p: float = 0.9
|
| 23 |
+
) -> Iterator[str]:
|
| 24 |
+
conversation = []
|
| 25 |
+
for user, assistant in chat_history:
|
| 26 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
| 27 |
+
conversation.append({"role": "user", "content": message})
|
| 28 |
+
|
| 29 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
| 30 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 31 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 32 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 33 |
+
input_ids = input_ids.to(model.device)
|
| 34 |
+
|
| 35 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 36 |
+
generate_kwargs = dict(
|
| 37 |
+
{"input_ids": input_ids},
|
| 38 |
+
streamer=streamer,
|
| 39 |
+
max_new_tokens=max_new_tokens,
|
| 40 |
do_sample=True,
|
|
|
|
| 41 |
top_p=top_p,
|
| 42 |
+
temperature=temperature,
|
| 43 |
+
num_beams=1
|
| 44 |
)
|
| 45 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 46 |
+
t.start()
|
| 47 |
+
|
| 48 |
+
outputs = []
|
| 49 |
+
for text in streamer:
|
| 50 |
+
outputs.append(text)
|
| 51 |
+
yield "".join(outputs)
|
| 52 |
|
| 53 |
+
|
| 54 |
# Настройка интерфейса Gradio
|
| 55 |
iface = gr.ChatInterface(
|
| 56 |
predict,
|