Ovis-Image-7B / app.py
Flourish's picture
Update app.py
c27ae96 verified
import os
import torch
import gradio as gr
import spaces
import random
import numpy as np
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from diffusers.utils import logging
from PIL import Image
from ovis_image.model.tokenizer import build_ovis_tokenizer
from ovis_image.model.autoencoder import load_ae
from ovis_image.model.hf_embedder import OvisEmbedder
from ovis_image.model.model import OvisImageModel
from ovis_image.sampling import generate_image
from ovis_image import ovis_image_configs
logging.set_verbosity_error()
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
device = "cuda"
_dtype = torch.bfloat16
hf_token = os.getenv("HF_TOKEN")
print("init ovis_image")
model_config = ovis_image_configs["ovis-image-7b"]
ovis_image = OvisImageModel(model_config)
ovis_image_path = hf_hub_download(
repo_id="AIDC-AI/Ovis-Image-7B",
filename="ovis_image.safetensors",
token=hf_token,
)
model_state_dict = load_file(ovis_image_path)
missing_keys, unexpected_keys = ovis_image.load_state_dict(model_state_dict)
print(f"Load Missing Keys {missing_keys}")
print(f"Load Unexpected Keys {unexpected_keys}")
ovis_image = ovis_image.to(device=device, dtype=_dtype)
ovis_image.eval()
print("init vae")
vae_path = hf_hub_download(
repo_id="AIDC-AI/Ovis-Image-7B",
filename="ae.safetensors",
token=hf_token,
)
autoencoder = load_ae(
vae_path,
model_config.autoencoder_params,
device=device,
dtype=_dtype,
random_init=False,
)
autoencoder.eval()
print("init ovis")
# ovis_path = hf_hub_download(
# repo_id="AIDC-AI/Ovis-Image-7B",
# subfolder="Ovis2.5-2B",
# token=hf_token,
# )
ovis_tokenizer = build_ovis_tokenizer(
"AIDC-AI/Ovis2.5-2B",
)
ovis_encoder = OvisEmbedder(
model_path="AIDC-AI/Ovis2.5-2B",
random_init=False,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
).to(device=device, dtype=_dtype)
@spaces.GPU(duration=75)
def generate(prompt, img_height=1024, img_width=1024, seed=42, steps=50, guidance_scale=5.0):
print(f'inference with prompt : {prompt}, size: {img_height}x{img_width}, seed : {seed}, step : {steps}, cfg : {guidance_scale}')
image = generate_image(
device=next(ovis_image.parameters()).device,
dtype=_dtype,
model=ovis_image,
prompt=prompt,
autoencoder=autoencoder,
ovis_tokenizer=ovis_tokenizer,
ovis_encoder=ovis_encoder,
img_height=img_height,
img_width=img_width,
denoising_steps=steps,
cfg_scale=guidance_scale,
seed=seed,
)
# bring into PIL format and save
image = image.clamp(-1, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = (image * 255).round().astype("uint8")
return image[0]
examples = [
"Solar punk vehicle in a bustling city",
"An anthropomorphic cat riding a Harley Davidson in Arizona with sunglasses and a leather jacket",
"An elderly woman poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Ovis-Image
[[code](https://github.com/AIDC-AI/Ovis-Image)] [[model](https://huggingface.co/AIDC-AI/Ovis-Image-7B)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt here",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
img_height = gr.Slider(
label="Image Height",
minimum=256,
maximum=2048,
step=32,
value=1024,
)
img_width = gr.Slider(
label="Image Width",
minimum=256,
maximum=2048,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=14,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
gr.Examples(
examples = examples,
fn = generate,
inputs = [prompt],
outputs = [result],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = generate,
inputs = [prompt, img_height, img_width, seed, num_inference_steps, guidance_scale],
outputs = [result]
)
if __name__ == '__main__':
demo.launch()