Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| import random | |
| import numpy as np | |
| from safetensors.torch import load_file | |
| from huggingface_hub import hf_hub_download | |
| from diffusers.utils import logging | |
| from PIL import Image | |
| from ovis_image.model.tokenizer import build_ovis_tokenizer | |
| from ovis_image.model.autoencoder import load_ae | |
| from ovis_image.model.hf_embedder import OvisEmbedder | |
| from ovis_image.model.model import OvisImageModel | |
| from ovis_image.sampling import generate_image | |
| from ovis_image import ovis_image_configs | |
| logging.set_verbosity_error() | |
| # DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| device = "cuda" | |
| _dtype = torch.bfloat16 | |
| hf_token = os.getenv("HF_TOKEN") | |
| print("init ovis_image") | |
| model_config = ovis_image_configs["ovis-image-7b"] | |
| ovis_image = OvisImageModel(model_config) | |
| ovis_image_path = hf_hub_download( | |
| repo_id="AIDC-AI/Ovis-Image-7B", | |
| filename="ovis_image.safetensors", | |
| token=hf_token, | |
| ) | |
| model_state_dict = load_file(ovis_image_path) | |
| missing_keys, unexpected_keys = ovis_image.load_state_dict(model_state_dict) | |
| print(f"Load Missing Keys {missing_keys}") | |
| print(f"Load Unexpected Keys {unexpected_keys}") | |
| ovis_image = ovis_image.to(device=device, dtype=_dtype) | |
| ovis_image.eval() | |
| print("init vae") | |
| vae_path = hf_hub_download( | |
| repo_id="AIDC-AI/Ovis-Image-7B", | |
| filename="ae.safetensors", | |
| token=hf_token, | |
| ) | |
| autoencoder = load_ae( | |
| vae_path, | |
| model_config.autoencoder_params, | |
| device=device, | |
| dtype=_dtype, | |
| random_init=False, | |
| ) | |
| autoencoder.eval() | |
| print("init ovis") | |
| # ovis_path = hf_hub_download( | |
| # repo_id="AIDC-AI/Ovis-Image-7B", | |
| # subfolder="Ovis2.5-2B", | |
| # token=hf_token, | |
| # ) | |
| ovis_tokenizer = build_ovis_tokenizer( | |
| "AIDC-AI/Ovis2.5-2B", | |
| ) | |
| ovis_encoder = OvisEmbedder( | |
| model_path="AIDC-AI/Ovis2.5-2B", | |
| random_init=False, | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch.bfloat16, | |
| ).to(device=device, dtype=_dtype) | |
| def generate(prompt, img_height=1024, img_width=1024, seed=42, steps=50, guidance_scale=5.0): | |
| print(f'inference with prompt : {prompt}, size: {img_height}x{img_width}, seed : {seed}, step : {steps}, cfg : {guidance_scale}') | |
| image = generate_image( | |
| device=next(ovis_image.parameters()).device, | |
| dtype=_dtype, | |
| model=ovis_image, | |
| prompt=prompt, | |
| autoencoder=autoencoder, | |
| ovis_tokenizer=ovis_tokenizer, | |
| ovis_encoder=ovis_encoder, | |
| img_height=img_height, | |
| img_width=img_width, | |
| denoising_steps=steps, | |
| cfg_scale=guidance_scale, | |
| seed=seed, | |
| ) | |
| # bring into PIL format and save | |
| image = image.clamp(-1, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| image = (image * 255).round().astype("uint8") | |
| return image[0] | |
| examples = [ | |
| "Solar punk vehicle in a bustling city", | |
| "An anthropomorphic cat riding a Harley Davidson in Arizona with sunglasses and a leather jacket", | |
| "An elderly woman poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# Ovis-Image | |
| [[code](https://github.com/AIDC-AI/Ovis-Image)] [[model](https://huggingface.co/AIDC-AI/Ovis-Image-7B)] | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt here", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| img_height = gr.Slider( | |
| label="Image Height", | |
| minimum=256, | |
| maximum=2048, | |
| step=32, | |
| value=1024, | |
| ) | |
| img_width = gr.Slider( | |
| label="Image Width", | |
| minimum=256, | |
| maximum=2048, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=14, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| fn = generate, | |
| inputs = [prompt], | |
| outputs = [result], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = generate, | |
| inputs = [prompt, img_height, img_width, seed, num_inference_steps, guidance_scale], | |
| outputs = [result] | |
| ) | |
| if __name__ == '__main__': | |
| demo.launch() |