Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -69,7 +69,8 @@ def generate_html_table_from_df(df):
|
|
| 69 |
html += '<tbody>'
|
| 70 |
for _, row in df.iterrows():
|
| 71 |
energy_numeric = row['gpu_energy_numeric']
|
| 72 |
-
|
|
|
|
| 73 |
bar_width = (energy_numeric / max_energy) * 100
|
| 74 |
score_val = row['energy_score']
|
| 75 |
bar_color = color_map.get(str(score_val), "gray")
|
|
@@ -108,6 +109,20 @@ def compute_efficiency_ratio(df):
|
|
| 108 |
ratio = max_val / min_val if min_val > 0 else 1
|
| 109 |
return ratio
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
def get_global_callout():
|
| 112 |
all_df = pd.DataFrame()
|
| 113 |
for task in tasks:
|
|
@@ -117,9 +132,10 @@ def get_global_callout():
|
|
| 117 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 118 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 119 |
ratio = compute_efficiency_ratio(all_df)
|
| 120 |
-
return
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
### ZIP DOWNLOAD (unchanged) ###
|
| 123 |
def zip_csv_files():
|
| 124 |
data_dir = "data/energy"
|
| 125 |
zip_filename = "data.zip"
|
|
@@ -143,7 +159,7 @@ def get_zip_data_link():
|
|
| 143 |
)
|
| 144 |
return href
|
| 145 |
|
| 146 |
-
### UPDATE FUNCTIONS
|
| 147 |
|
| 148 |
def update_text_generation(selected_display, sort_order):
|
| 149 |
mapping = {
|
|
@@ -158,75 +174,74 @@ def update_text_generation(selected_display, sort_order):
|
|
| 158 |
return df
|
| 159 |
df = process_df('text_generation.csv', sort_order, filter_fn)
|
| 160 |
ratio = compute_efficiency_ratio(df)
|
| 161 |
-
callout =
|
| 162 |
table_html = generate_html_table_from_df(df)
|
| 163 |
return callout, table_html
|
| 164 |
|
| 165 |
def update_image_generation(sort_order):
|
| 166 |
df = process_df('image_generation.csv', sort_order)
|
| 167 |
ratio = compute_efficiency_ratio(df)
|
| 168 |
-
callout =
|
| 169 |
table_html = generate_html_table_from_df(df)
|
| 170 |
return callout, table_html
|
| 171 |
|
| 172 |
def update_text_classification(sort_order):
|
| 173 |
df = process_df('text_classification.csv', sort_order)
|
| 174 |
ratio = compute_efficiency_ratio(df)
|
| 175 |
-
callout =
|
| 176 |
table_html = generate_html_table_from_df(df)
|
| 177 |
return callout, table_html
|
| 178 |
|
| 179 |
def update_image_classification(sort_order):
|
| 180 |
df = process_df('image_classification.csv', sort_order)
|
| 181 |
ratio = compute_efficiency_ratio(df)
|
| 182 |
-
callout =
|
| 183 |
table_html = generate_html_table_from_df(df)
|
| 184 |
return callout, table_html
|
| 185 |
|
| 186 |
def update_image_captioning(sort_order):
|
| 187 |
df = process_df('image_captioning.csv', sort_order)
|
| 188 |
ratio = compute_efficiency_ratio(df)
|
| 189 |
-
callout =
|
| 190 |
table_html = generate_html_table_from_df(df)
|
| 191 |
return callout, table_html
|
| 192 |
|
| 193 |
def update_summarization(sort_order):
|
| 194 |
df = process_df('summarization.csv', sort_order)
|
| 195 |
ratio = compute_efficiency_ratio(df)
|
| 196 |
-
callout =
|
| 197 |
table_html = generate_html_table_from_df(df)
|
| 198 |
return callout, table_html
|
| 199 |
|
| 200 |
def update_asr(sort_order):
|
| 201 |
df = process_df('asr.csv', sort_order)
|
| 202 |
ratio = compute_efficiency_ratio(df)
|
| 203 |
-
callout =
|
| 204 |
table_html = generate_html_table_from_df(df)
|
| 205 |
return callout, table_html
|
| 206 |
|
| 207 |
def update_object_detection(sort_order):
|
| 208 |
df = process_df('object_detection.csv', sort_order)
|
| 209 |
ratio = compute_efficiency_ratio(df)
|
| 210 |
-
callout =
|
| 211 |
table_html = generate_html_table_from_df(df)
|
| 212 |
return callout, table_html
|
| 213 |
|
| 214 |
def update_sentence_similarity(sort_order):
|
| 215 |
df = process_df('sentence_similarity.csv', sort_order)
|
| 216 |
ratio = compute_efficiency_ratio(df)
|
| 217 |
-
callout =
|
| 218 |
table_html = generate_html_table_from_df(df)
|
| 219 |
return callout, table_html
|
| 220 |
|
| 221 |
def update_extractive_qa(sort_order):
|
| 222 |
df = process_df('question_answering.csv', sort_order)
|
| 223 |
ratio = compute_efficiency_ratio(df)
|
| 224 |
-
callout =
|
| 225 |
table_html = generate_html_table_from_df(df)
|
| 226 |
return callout, table_html
|
| 227 |
|
| 228 |
def update_all_tasks(sort_order):
|
| 229 |
-
# Process all CSV files together
|
| 230 |
all_df = pd.DataFrame()
|
| 231 |
for task in tasks:
|
| 232 |
df = pd.read_csv('data/energy/' + task)
|
|
@@ -242,7 +257,7 @@ def update_all_tasks(sort_order):
|
|
| 242 |
ascending = True if sort_order == "Low to High" else False
|
| 243 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 244 |
ratio = compute_efficiency_ratio(all_df)
|
| 245 |
-
callout =
|
| 246 |
table_html = generate_html_table_from_df(all_df)
|
| 247 |
return callout, table_html
|
| 248 |
|
|
@@ -267,7 +282,7 @@ demo = gr.Blocks(css="""
|
|
| 267 |
""")
|
| 268 |
|
| 269 |
with demo:
|
| 270 |
-
# --- Header Links
|
| 271 |
gr.HTML(f'''
|
| 272 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
| 273 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
|
@@ -288,11 +303,10 @@ with demo:
|
|
| 288 |
</div>
|
| 289 |
''')
|
| 290 |
|
| 291 |
-
# --- Global Callout
|
| 292 |
global_callout = gr.HTML(get_global_callout())
|
| 293 |
|
| 294 |
-
|
| 295 |
-
gr.Markdown('<div style="text-align: center; margin-top: 10px;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
| 296 |
|
| 297 |
# --- Tabs for the different tasks ---
|
| 298 |
with gr.Tabs():
|
|
@@ -316,7 +330,6 @@ with demo:
|
|
| 316 |
)
|
| 317 |
tg_callout = gr.HTML()
|
| 318 |
tg_table = gr.HTML()
|
| 319 |
-
# Set initial values
|
| 320 |
init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
|
| 321 |
tg_callout.value = init_callout
|
| 322 |
tg_table.value = init_table
|
|
|
|
| 69 |
html += '<tbody>'
|
| 70 |
for _, row in df.iterrows():
|
| 71 |
energy_numeric = row['gpu_energy_numeric']
|
| 72 |
+
# Format energy with commas and 2 decimal places.
|
| 73 |
+
energy_str = f"{energy_numeric:,.2f}"
|
| 74 |
bar_width = (energy_numeric / max_energy) * 100
|
| 75 |
score_val = row['energy_score']
|
| 76 |
bar_color = color_map.get(str(score_val), "gray")
|
|
|
|
| 109 |
ratio = max_val / min_val if min_val > 0 else 1
|
| 110 |
return ratio
|
| 111 |
|
| 112 |
+
def generate_callout(ratio, scope_text):
|
| 113 |
+
"""
|
| 114 |
+
Returns a right-aligned callout where the inner box is shrink-wrapped to its text.
|
| 115 |
+
The ratio is formatted with a comma for thousands.
|
| 116 |
+
"""
|
| 117 |
+
return (
|
| 118 |
+
f'<div style="text-align: right;">'
|
| 119 |
+
f' <div style="display: inline-block; background-color: #f2f2f2; padding: 10px; '
|
| 120 |
+
f' border-radius: 5px; margin-bottom:10px;">'
|
| 121 |
+
f' Energy difference of <strong>{ratio:,.1f}x</strong> for {scope_text}.'
|
| 122 |
+
f' </div>'
|
| 123 |
+
f'</div>'
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
def get_global_callout():
|
| 127 |
all_df = pd.DataFrame()
|
| 128 |
for task in tasks:
|
|
|
|
| 132 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 133 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 134 |
ratio = compute_efficiency_ratio(all_df)
|
| 135 |
+
return generate_callout(ratio, "all models in leaderboard")
|
| 136 |
+
|
| 137 |
+
### ZIP DOWNLOAD FUNCTIONS ###
|
| 138 |
|
|
|
|
| 139 |
def zip_csv_files():
|
| 140 |
data_dir = "data/energy"
|
| 141 |
zip_filename = "data.zip"
|
|
|
|
| 159 |
)
|
| 160 |
return href
|
| 161 |
|
| 162 |
+
### UPDATE FUNCTIONS (RETURNING CALLOUT AND TABLE HTML) ###
|
| 163 |
|
| 164 |
def update_text_generation(selected_display, sort_order):
|
| 165 |
mapping = {
|
|
|
|
| 174 |
return df
|
| 175 |
df = process_df('text_generation.csv', sort_order, filter_fn)
|
| 176 |
ratio = compute_efficiency_ratio(df)
|
| 177 |
+
callout = generate_callout(ratio, "all models in task")
|
| 178 |
table_html = generate_html_table_from_df(df)
|
| 179 |
return callout, table_html
|
| 180 |
|
| 181 |
def update_image_generation(sort_order):
|
| 182 |
df = process_df('image_generation.csv', sort_order)
|
| 183 |
ratio = compute_efficiency_ratio(df)
|
| 184 |
+
callout = generate_callout(ratio, "all models in task")
|
| 185 |
table_html = generate_html_table_from_df(df)
|
| 186 |
return callout, table_html
|
| 187 |
|
| 188 |
def update_text_classification(sort_order):
|
| 189 |
df = process_df('text_classification.csv', sort_order)
|
| 190 |
ratio = compute_efficiency_ratio(df)
|
| 191 |
+
callout = generate_callout(ratio, "all models in task")
|
| 192 |
table_html = generate_html_table_from_df(df)
|
| 193 |
return callout, table_html
|
| 194 |
|
| 195 |
def update_image_classification(sort_order):
|
| 196 |
df = process_df('image_classification.csv', sort_order)
|
| 197 |
ratio = compute_efficiency_ratio(df)
|
| 198 |
+
callout = generate_callout(ratio, "all models in task")
|
| 199 |
table_html = generate_html_table_from_df(df)
|
| 200 |
return callout, table_html
|
| 201 |
|
| 202 |
def update_image_captioning(sort_order):
|
| 203 |
df = process_df('image_captioning.csv', sort_order)
|
| 204 |
ratio = compute_efficiency_ratio(df)
|
| 205 |
+
callout = generate_callout(ratio, "all models in task")
|
| 206 |
table_html = generate_html_table_from_df(df)
|
| 207 |
return callout, table_html
|
| 208 |
|
| 209 |
def update_summarization(sort_order):
|
| 210 |
df = process_df('summarization.csv', sort_order)
|
| 211 |
ratio = compute_efficiency_ratio(df)
|
| 212 |
+
callout = generate_callout(ratio, "all models in task")
|
| 213 |
table_html = generate_html_table_from_df(df)
|
| 214 |
return callout, table_html
|
| 215 |
|
| 216 |
def update_asr(sort_order):
|
| 217 |
df = process_df('asr.csv', sort_order)
|
| 218 |
ratio = compute_efficiency_ratio(df)
|
| 219 |
+
callout = generate_callout(ratio, "all models in task")
|
| 220 |
table_html = generate_html_table_from_df(df)
|
| 221 |
return callout, table_html
|
| 222 |
|
| 223 |
def update_object_detection(sort_order):
|
| 224 |
df = process_df('object_detection.csv', sort_order)
|
| 225 |
ratio = compute_efficiency_ratio(df)
|
| 226 |
+
callout = generate_callout(ratio, "all models in task")
|
| 227 |
table_html = generate_html_table_from_df(df)
|
| 228 |
return callout, table_html
|
| 229 |
|
| 230 |
def update_sentence_similarity(sort_order):
|
| 231 |
df = process_df('sentence_similarity.csv', sort_order)
|
| 232 |
ratio = compute_efficiency_ratio(df)
|
| 233 |
+
callout = generate_callout(ratio, "all models in task")
|
| 234 |
table_html = generate_html_table_from_df(df)
|
| 235 |
return callout, table_html
|
| 236 |
|
| 237 |
def update_extractive_qa(sort_order):
|
| 238 |
df = process_df('question_answering.csv', sort_order)
|
| 239 |
ratio = compute_efficiency_ratio(df)
|
| 240 |
+
callout = generate_callout(ratio, "all models in task")
|
| 241 |
table_html = generate_html_table_from_df(df)
|
| 242 |
return callout, table_html
|
| 243 |
|
| 244 |
def update_all_tasks(sort_order):
|
|
|
|
| 245 |
all_df = pd.DataFrame()
|
| 246 |
for task in tasks:
|
| 247 |
df = pd.read_csv('data/energy/' + task)
|
|
|
|
| 257 |
ascending = True if sort_order == "Low to High" else False
|
| 258 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 259 |
ratio = compute_efficiency_ratio(all_df)
|
| 260 |
+
callout = generate_callout(ratio, "all models in leaderboard")
|
| 261 |
table_html = generate_html_table_from_df(all_df)
|
| 262 |
return callout, table_html
|
| 263 |
|
|
|
|
| 282 |
""")
|
| 283 |
|
| 284 |
with demo:
|
| 285 |
+
# --- Header Links ---
|
| 286 |
gr.HTML(f'''
|
| 287 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
| 288 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
|
|
|
| 303 |
</div>
|
| 304 |
''')
|
| 305 |
|
| 306 |
+
# --- Global Callout ---
|
| 307 |
global_callout = gr.HTML(get_global_callout())
|
| 308 |
|
| 309 |
+
gr.Markdown('<div style="text-align: center; margin-top: 10px;">Select different tasks to see scored models.</div>')
|
|
|
|
| 310 |
|
| 311 |
# --- Tabs for the different tasks ---
|
| 312 |
with gr.Tabs():
|
|
|
|
| 330 |
)
|
| 331 |
tg_callout = gr.HTML()
|
| 332 |
tg_table = gr.HTML()
|
|
|
|
| 333 |
init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
|
| 334 |
tg_callout.value = init_callout
|
| 335 |
tg_table.value = init_table
|