Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,108 +1,33 @@
|
|
| 1 |
import os, glob
|
| 2 |
-
import json
|
| 3 |
-
from datetime import datetime, timezone
|
| 4 |
-
from dataclasses import dataclass
|
| 5 |
-
from datasets import load_dataset, Dataset
|
| 6 |
import pandas as pd
|
| 7 |
import gradio as gr
|
| 8 |
-
from
|
| 9 |
-
from
|
| 10 |
|
| 11 |
OWNER = "AIEnergyScore"
|
| 12 |
-
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
|
| 13 |
TOKEN = os.environ.get("DEBUG")
|
| 14 |
API = HfApi(token=TOKEN)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
name: str
|
| 32 |
-
display_name: str = ""
|
| 33 |
-
symbol: str = "" # emoji
|
| 34 |
-
|
| 35 |
-
def start_compute_space():
|
| 36 |
-
API.restart_space(COMPUTE_SPACE)
|
| 37 |
-
gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!")
|
| 38 |
-
|
| 39 |
-
def get_model_size(model_info: ModelInfo):
|
| 40 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
| 41 |
-
try:
|
| 42 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
| 43 |
-
except (AttributeError, TypeError):
|
| 44 |
-
return 0 # Unknown model sizes are indicated as 0
|
| 45 |
-
return model_size
|
| 46 |
-
|
| 47 |
-
def add_docker_eval(zip_file):
|
| 48 |
-
new_fid_list = zip_file.split("/")
|
| 49 |
-
new_fid = new_fid_list[-1]
|
| 50 |
-
if new_fid.endswith('.zip'):
|
| 51 |
-
API.upload_file(
|
| 52 |
-
path_or_fileobj=zip_file,
|
| 53 |
-
repo_id="AIEnergyScore/tested_proprietary_models",
|
| 54 |
-
path_in_repo='submitted_models/' + new_fid,
|
| 55 |
-
repo_type="dataset",
|
| 56 |
-
commit_message="Adding logs via submission Space.",
|
| 57 |
-
token=TOKEN
|
| 58 |
-
)
|
| 59 |
-
gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.')
|
| 60 |
-
else:
|
| 61 |
-
gr.Info('You can only upload .zip files here!')
|
| 62 |
-
|
| 63 |
-
def add_new_eval(repo_id: str, task: str):
|
| 64 |
-
model_owner = repo_id.split("/")[0]
|
| 65 |
-
model_name = repo_id.split("/")[1]
|
| 66 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 67 |
-
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
|
| 68 |
-
requests_dset = requests.to_pandas()
|
| 69 |
-
model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
|
| 70 |
-
task_models = list(API.list_models(filter=task_mappings[task]))
|
| 71 |
-
task_model_names = [m.id for m in task_models]
|
| 72 |
-
if repo_id in model_list:
|
| 73 |
-
gr.Info('This model has already been run!')
|
| 74 |
-
elif repo_id not in task_model_names:
|
| 75 |
-
gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination")
|
| 76 |
-
else:
|
| 77 |
-
try:
|
| 78 |
-
model_info = API.model_info(repo_id=repo_id)
|
| 79 |
-
model_size = get_model_size(model_info=model_info)
|
| 80 |
-
likes = model_info.likes
|
| 81 |
-
except Exception:
|
| 82 |
-
gr.Info("Could not find information for model %s" % (model_name))
|
| 83 |
-
model_size = None
|
| 84 |
-
likes = None
|
| 85 |
-
|
| 86 |
-
gr.Info("Adding request")
|
| 87 |
-
request_dict = {
|
| 88 |
-
"model": repo_id,
|
| 89 |
-
"status": "PENDING",
|
| 90 |
-
"submitted_time": pd.to_datetime(current_time),
|
| 91 |
-
"task": task_mappings[task],
|
| 92 |
-
"likes": likes,
|
| 93 |
-
"params": model_size,
|
| 94 |
-
"leaderboard_version": "v0",
|
| 95 |
-
}
|
| 96 |
-
print("Writing out request file to dataset")
|
| 97 |
-
df_request_dict = pd.DataFrame([request_dict])
|
| 98 |
-
print(df_request_dict)
|
| 99 |
-
df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
|
| 100 |
-
updated_dset = Dataset.from_pandas(df_final)
|
| 101 |
-
updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN)
|
| 102 |
-
gr.Info("Starting compute space at %s " % COMPUTE_SPACE)
|
| 103 |
-
return start_compute_space()
|
| 104 |
|
| 105 |
def print_existing_models():
|
|
|
|
|
|
|
|
|
|
| 106 |
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
|
| 107 |
requests_dset = requests.to_pandas()
|
| 108 |
model_df = requests_dset[['model', 'status']]
|
|
@@ -116,23 +41,14 @@ def highlight_cols(x):
|
|
| 116 |
df[df['status'] == 'FAILED'] = 'color: red'
|
| 117 |
return df
|
| 118 |
|
| 119 |
-
#
|
| 120 |
existing_models = print_existing_models()
|
| 121 |
formatted_df = existing_models.style.apply(highlight_cols, axis=None)
|
| 122 |
|
| 123 |
-
def get_leaderboard_models():
|
| 124 |
-
path = r'leaderboard_v0_data/energy'
|
| 125 |
-
filenames = glob.glob(path + "/*.csv")
|
| 126 |
-
data = []
|
| 127 |
-
for filename in filenames:
|
| 128 |
-
data.append(pd.read_csv(filename))
|
| 129 |
-
# Return an empty dataframe with expected columns if no files are found
|
| 130 |
-
if not data:
|
| 131 |
-
return pd.DataFrame(columns=['model', 'task'])
|
| 132 |
-
leaderboard_data = pd.concat(data, ignore_index=True)
|
| 133 |
-
return leaderboard_data[['model', 'task']]
|
| 134 |
-
|
| 135 |
def get_zip_data_link():
|
|
|
|
|
|
|
|
|
|
| 136 |
return (
|
| 137 |
'<a href="https://example.com/download.zip" '
|
| 138 |
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
|
|
@@ -153,7 +69,7 @@ with gr.Blocks() as demo:
|
|
| 153 |
/* Center the subtitle text */
|
| 154 |
.centered-subtitle {
|
| 155 |
text-align: center;
|
| 156 |
-
font-size: 1.
|
| 157 |
margin-bottom: 20px;
|
| 158 |
}
|
| 159 |
/* Full width container for matching widget edges */
|
|
@@ -163,8 +79,13 @@ with gr.Blocks() as demo:
|
|
| 163 |
</style>
|
| 164 |
''')
|
| 165 |
|
| 166 |
-
# --- Header Links
|
| 167 |
with gr.Row(elem_classes="header-links"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
submission_link = gr.HTML(
|
| 169 |
'<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" '
|
| 170 |
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
|
|
@@ -192,61 +113,23 @@ with gr.Blocks() as demo:
|
|
| 192 |
'color: black; font-family: \'Inter\', sans-serif;">Community</a>'
|
| 193 |
)
|
| 194 |
|
| 195 |
-
# --- Logo (
|
| 196 |
gr.HTML('''
|
| 197 |
-
<div style="margin-top:
|
| 198 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
| 199 |
alt="Logo"
|
| 200 |
-
style="
|
| 201 |
</div>
|
| 202 |
''')
|
| 203 |
|
| 204 |
-
# --- Subtitle
|
| 205 |
-
gr.Markdown('<p class="centered-subtitle">Welcome to the AI Energy Score Leaderboard.
|
| 206 |
|
| 207 |
-
# ---
|
| 208 |
with gr.Column(elem_classes="full-width"):
|
| 209 |
-
with gr.
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
label="Choose a benchmark task",
|
| 214 |
-
value='Text Generation',
|
| 215 |
-
multiselect=False,
|
| 216 |
-
interactive=True,
|
| 217 |
-
)
|
| 218 |
-
with gr.Column():
|
| 219 |
-
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
|
| 220 |
-
|
| 221 |
-
with gr.Row():
|
| 222 |
-
with gr.Column():
|
| 223 |
-
submit_button = gr.Button("Submit for Analysis")
|
| 224 |
-
submission_result = gr.Markdown()
|
| 225 |
-
submit_button.click(
|
| 226 |
-
fn=add_new_eval,
|
| 227 |
-
inputs=[model_name_textbox, task],
|
| 228 |
-
outputs=submission_result,
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
# --- Docker Log Submission (Simplified) ---
|
| 232 |
-
with gr.Accordion("Submit log files from a Docker run:", open=False):
|
| 233 |
-
gr.Markdown("""
|
| 234 |
-
**⚠️ Warning: By uploading the zip file, you confirm that you have read and agree to the following terms:**
|
| 235 |
-
|
| 236 |
-
- **Public Data Sharing:** You consent to the public sharing of the energy performance data derived from your submission. No additional information related to this model, including proprietary configurations, will be disclosed.
|
| 237 |
-
- **Data Integrity:** You certify that the log files submitted are accurate, unaltered, and generated directly from testing your model as per the specified benchmarking procedures.
|
| 238 |
-
- **Model Representation:** You affirm that the model tested and submitted is representative of the production-level version, including its level of quantization and any other relevant characteristics impacting energy efficiency and performance.
|
| 239 |
-
""")
|
| 240 |
-
file_output = gr.File(visible=False)
|
| 241 |
-
u = gr.UploadButton("Upload a zip file with logs", file_count="single", interactive=True)
|
| 242 |
-
u.upload(add_docker_eval, u, file_output)
|
| 243 |
-
|
| 244 |
-
# --- Leaderboard and Recent Models Accordions ---
|
| 245 |
-
with gr.Row():
|
| 246 |
-
with gr.Column():
|
| 247 |
-
with gr.Accordion("Models that are in the latest leaderboard version:", open=False, visible=False):
|
| 248 |
-
gr.Dataframe(get_leaderboard_models(), elem_classes="full-width")
|
| 249 |
-
with gr.Accordion("Models that have been benchmarked recently:", open=False, visible=False):
|
| 250 |
-
gr.Dataframe(formatted_df, elem_classes="full-width")
|
| 251 |
|
| 252 |
-
demo.launch()
|
|
|
|
| 1 |
import os, glob
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import gradio as gr
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from huggingface_hub import HfApi
|
| 6 |
|
| 7 |
OWNER = "AIEnergyScore"
|
|
|
|
| 8 |
TOKEN = os.environ.get("DEBUG")
|
| 9 |
API = HfApi(token=TOKEN)
|
| 10 |
|
| 11 |
+
def get_leaderboard_models():
|
| 12 |
+
"""
|
| 13 |
+
Reads CSV files from the leaderboard directory and returns a DataFrame
|
| 14 |
+
containing the 'model' and 'task' columns.
|
| 15 |
+
If no CSV files are found, returns an empty DataFrame with those columns.
|
| 16 |
+
"""
|
| 17 |
+
path = r'leaderboard_v0_data/energy'
|
| 18 |
+
filenames = glob.glob(os.path.join(path, "*.csv"))
|
| 19 |
+
data = []
|
| 20 |
+
for filename in filenames:
|
| 21 |
+
data.append(pd.read_csv(filename))
|
| 22 |
+
if not data:
|
| 23 |
+
return pd.DataFrame(columns=['model', 'task'])
|
| 24 |
+
leaderboard_data = pd.concat(data, ignore_index=True)
|
| 25 |
+
return leaderboard_data[['model', 'task']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def print_existing_models():
|
| 28 |
+
"""
|
| 29 |
+
Loads a dataset of requests and returns the models that have been benchmarked.
|
| 30 |
+
"""
|
| 31 |
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
|
| 32 |
requests_dset = requests.to_pandas()
|
| 33 |
model_df = requests_dset[['model', 'status']]
|
|
|
|
| 41 |
df[df['status'] == 'FAILED'] = 'color: red'
|
| 42 |
return df
|
| 43 |
|
| 44 |
+
# Apply styling to the recently benchmarked models table.
|
| 45 |
existing_models = print_existing_models()
|
| 46 |
formatted_df = existing_models.style.apply(highlight_cols, axis=None)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def get_zip_data_link():
|
| 49 |
+
"""
|
| 50 |
+
Returns an HTML link for downloading logs.
|
| 51 |
+
"""
|
| 52 |
return (
|
| 53 |
'<a href="https://example.com/download.zip" '
|
| 54 |
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
|
|
|
|
| 69 |
/* Center the subtitle text */
|
| 70 |
.centered-subtitle {
|
| 71 |
text-align: center;
|
| 72 |
+
font-size: 1.4em;
|
| 73 |
margin-bottom: 20px;
|
| 74 |
}
|
| 75 |
/* Full width container for matching widget edges */
|
|
|
|
| 79 |
</style>
|
| 80 |
''')
|
| 81 |
|
| 82 |
+
# --- Header Links ---
|
| 83 |
with gr.Row(elem_classes="header-links"):
|
| 84 |
+
leaderboard_link = gr.HTML(
|
| 85 |
+
'<a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard" '
|
| 86 |
+
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
|
| 87 |
+
'color: black; font-family: \'Inter\', sans-serif;">Leaderboard</a>'
|
| 88 |
+
)
|
| 89 |
submission_link = gr.HTML(
|
| 90 |
'<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" '
|
| 91 |
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
|
|
|
|
| 113 |
'color: black; font-family: \'Inter\', sans-serif;">Community</a>'
|
| 114 |
)
|
| 115 |
|
| 116 |
+
# --- Logo (Centered) ---
|
| 117 |
gr.HTML('''
|
| 118 |
+
<div style="text-align: center; margin-top: 20px;">
|
| 119 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
| 120 |
alt="Logo"
|
| 121 |
+
style="max-width: 500px; height: auto;">
|
| 122 |
</div>
|
| 123 |
''')
|
| 124 |
|
| 125 |
+
# --- Centered Subtitle ---
|
| 126 |
+
gr.Markdown('<p class="centered-subtitle">Welcome to the AI Energy Score Leaderboard. Explore the top-performing models below.</p>')
|
| 127 |
|
| 128 |
+
# --- Leaderboard Tables ---
|
| 129 |
with gr.Column(elem_classes="full-width"):
|
| 130 |
+
with gr.Accordion("Latest Leaderboard", open=True):
|
| 131 |
+
gr.Dataframe(get_leaderboard_models(), elem_classes="full-width")
|
| 132 |
+
with gr.Accordion("Recently Benchmarked Models", open=False):
|
| 133 |
+
gr.Dataframe(formatted_df, elem_classes="full-width")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
demo.launch()
|