big_mart_sales / app.py
AbdulmalikAdeyemo's picture
Update app.py
ea902e6
"""
@author: Abdulmalik Adeyemo
"""
import pandas as pd
from sklearn.preprocessing import StandardScaler, OrdinalEncoder, OneHotEncoder
import pickle
import streamlit as st
from streamlit_option_menu import option_menu
# loading the saved models
model = pickle.load(open('big_mart_model.pkl', 'rb'))
# sidebar for navigation
with st.sidebar:
selected = option_menu('Sales Prediction System', #Title of the OptionMenu
['Big Mart Sales Prediction','Financial Inclusion'], #You can add more options to the sidebar
icons=['shop', 'cash'], #BootStrap Icons - Add more depending on the number of sidebar options you have.
default_index=0) #Default side bar selection
# Sales Prediction Page
if (selected == 'Big Mart Sales Prediction'):
# page title
st.title('Sales Prediction using ML')
#Image
st.image('hero.jpg')
# getting the input data from the user
col1, col2 = st.columns(2)
with col1:
Item_Visibility = st.number_input('Item Visibility', min_value=0.00, max_value=0.40, step=0.01)
with col1:
Item_MRP = st.number_input('Item MRP', min_value=30.00, max_value=270.00, step=1.00)
with col1:
Outlet_Size = st.selectbox('Outlet Size', ['Small', 'Medium', 'High'])
with col2:
Item_Fat_Content = st.selectbox('Item Fat Content', ['Low Fat', 'Regular'])
with col2:
Outlet_Location_Type = st.selectbox('Outlet Location Type', ['Tier 1', 'Tier 2', 'Tier 3'])
#Data Preprocessing
data = {
'Item_Visibility': Item_Visibility,
'Item_MRP' : Item_MRP,
'Outlet_Size' : Outlet_Size,
'Item_Fat_Content_Regular': Item_Fat_Content,
'Outlet_Location_Type' : Outlet_Location_Type
}
oe = OrdinalEncoder(categories = [['Small','Medium','High']])
scaler = StandardScaler()
def make_prediction(data):
df = pd.DataFrame(data, index=[0])
if df['Item_Fat_Content_Regular'].values == 'Low Fat':
df['Item_Fat_Content_Regular'] = 0.0
if df['Item_Fat_Content_Regular'].values == 'Regular':
df['Item_Fat_Content_Regular'] = 1.0
if df['Outlet_Location_Type'].values == 'Tier 1':
df[['Outlet_Location_Type_Tier 1','Outlet_Location_Type_Tier 2', 'Outlet_Location_Type_Tier 3']] = [1.0, 0.0, 0.0]
if df['Outlet_Location_Type'].values == 'Tier 2':
df[['Outlet_Location_Type_Tier 1','Outlet_Location_Type_Tier 2', 'Outlet_Location_Type_Tier 3']] = [0.0, 1.0, 0.0]
if df['Outlet_Location_Type'].values == 'Tier 3':
df[['Outlet_Location_Type_Tier 1','Outlet_Location_Type_Tier 2', 'Outlet_Location_Type_Tier 3']] = [0.0, 0.0, 1.0]
df['Outlet_Size'] = oe.fit_transform(df[['Outlet_Size']])
df = df.drop(columns = ['Outlet_Location_Type'], axis = 1 )
df[['Item_Visibility', 'Item_MRP']] = StandardScaler().fit_transform(df[['Item_Visibility', 'Item_MRP']])
prediction = model.predict(df)
return round(float(prediction),2)
# code for Prediction
sales_prediction_output = ""
# creating a button for Prediction
if st.button('Predict Sales'):
sales_prediction = make_prediction(data)
sales_prediction_output = f"The sales is predicted to be {sales_prediction}"
st.success(sales_prediction_output)