Spaces:
Configuration error
Configuration error
| """ | |
| @author: Abdulmalik Adeyemo | |
| """ | |
| import pandas as pd | |
| from sklearn.preprocessing import StandardScaler, OrdinalEncoder, OneHotEncoder | |
| import pickle | |
| import streamlit as st | |
| from streamlit_option_menu import option_menu | |
| # loading the saved models | |
| model = pickle.load(open('big_mart_model.pkl', 'rb')) | |
| # sidebar for navigation | |
| with st.sidebar: | |
| selected = option_menu('Sales Prediction System', #Title of the OptionMenu | |
| ['Big Mart Sales Prediction','Financial Inclusion'], #You can add more options to the sidebar | |
| icons=['shop', 'cash'], #BootStrap Icons - Add more depending on the number of sidebar options you have. | |
| default_index=0) #Default side bar selection | |
| # Sales Prediction Page | |
| if (selected == 'Big Mart Sales Prediction'): | |
| # page title | |
| st.title('Sales Prediction using ML') | |
| #Image | |
| st.image('hero.jpg') | |
| # getting the input data from the user | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| Item_Visibility = st.number_input('Item Visibility', min_value=0.00, max_value=0.40, step=0.01) | |
| with col1: | |
| Item_MRP = st.number_input('Item MRP', min_value=30.00, max_value=270.00, step=1.00) | |
| with col1: | |
| Outlet_Size = st.selectbox('Outlet Size', ['Small', 'Medium', 'High']) | |
| with col2: | |
| Item_Fat_Content = st.selectbox('Item Fat Content', ['Low Fat', 'Regular']) | |
| with col2: | |
| Outlet_Location_Type = st.selectbox('Outlet Location Type', ['Tier 1', 'Tier 2', 'Tier 3']) | |
| #Data Preprocessing | |
| data = { | |
| 'Item_Visibility': Item_Visibility, | |
| 'Item_MRP' : Item_MRP, | |
| 'Outlet_Size' : Outlet_Size, | |
| 'Item_Fat_Content_Regular': Item_Fat_Content, | |
| 'Outlet_Location_Type' : Outlet_Location_Type | |
| } | |
| oe = OrdinalEncoder(categories = [['Small','Medium','High']]) | |
| scaler = StandardScaler() | |
| def make_prediction(data): | |
| df = pd.DataFrame(data, index=[0]) | |
| if df['Item_Fat_Content_Regular'].values == 'Low Fat': | |
| df['Item_Fat_Content_Regular'] = 0.0 | |
| if df['Item_Fat_Content_Regular'].values == 'Regular': | |
| df['Item_Fat_Content_Regular'] = 1.0 | |
| if df['Outlet_Location_Type'].values == 'Tier 1': | |
| df[['Outlet_Location_Type_Tier 1','Outlet_Location_Type_Tier 2', 'Outlet_Location_Type_Tier 3']] = [1.0, 0.0, 0.0] | |
| if df['Outlet_Location_Type'].values == 'Tier 2': | |
| df[['Outlet_Location_Type_Tier 1','Outlet_Location_Type_Tier 2', 'Outlet_Location_Type_Tier 3']] = [0.0, 1.0, 0.0] | |
| if df['Outlet_Location_Type'].values == 'Tier 3': | |
| df[['Outlet_Location_Type_Tier 1','Outlet_Location_Type_Tier 2', 'Outlet_Location_Type_Tier 3']] = [0.0, 0.0, 1.0] | |
| df['Outlet_Size'] = oe.fit_transform(df[['Outlet_Size']]) | |
| df = df.drop(columns = ['Outlet_Location_Type'], axis = 1 ) | |
| df[['Item_Visibility', 'Item_MRP']] = StandardScaler().fit_transform(df[['Item_Visibility', 'Item_MRP']]) | |
| prediction = model.predict(df) | |
| return round(float(prediction),2) | |
| # code for Prediction | |
| sales_prediction_output = "" | |
| # creating a button for Prediction | |
| if st.button('Predict Sales'): | |
| sales_prediction = make_prediction(data) | |
| sales_prediction_output = f"The sales is predicted to be {sales_prediction}" | |
| st.success(sales_prediction_output) | |