Spaces:
Runtime error
Runtime error
| import importlib | |
| import math | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| import os | |
| from safetensors.torch import load_file | |
| from inspect import isfunction | |
| from PIL import Image, ImageDraw, ImageFont | |
| def log_txt_as_img(wh, xc, size=10): | |
| # wh a tuple of (width, height) | |
| # xc a list of captions to plot | |
| b = len(xc) | |
| txts = list() | |
| for bi in range(b): | |
| txt = Image.new("RGB", wh, color="white") | |
| draw = ImageDraw.Draw(txt) | |
| font = ImageFont.truetype('assets/DejaVuSans.ttf', size=size) | |
| nc = int(40 * (wh[0] / 256)) | |
| lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) | |
| try: | |
| draw.text((0, 0), lines, fill="black", font=font) | |
| except UnicodeEncodeError: | |
| print("Cant encode string for logging. Skipping.") | |
| txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 | |
| txts.append(txt) | |
| txts = np.stack(txts) | |
| txts = torch.tensor(txts) | |
| return txts | |
| def ismap(x): | |
| if not isinstance(x, torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] > 3) | |
| def isimage(x): | |
| if not isinstance(x, torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
| def exists(x): | |
| return x is not None | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def mean_flat(tensor): | |
| """ | |
| https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| def count_params(model, verbose=False): | |
| total_params = sum(p.numel() for p in model.parameters()) | |
| if verbose: | |
| print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") | |
| return total_params | |
| def instantiate_from_config(config): | |
| if not "target" in config: | |
| if config == '__is_first_stage__': | |
| return None | |
| elif config == "__is_unconditional__": | |
| return None | |
| raise KeyError("Expected key `target` to instantiate.") | |
| return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| checkpoint_dict_replacements = { | |
| 'cond_stage_model.transformer.text_model.embeddings.': 'cond_stage_model.transformer.embeddings.', | |
| 'cond_stage_model.transformer.text_model.encoder.': 'cond_stage_model.transformer.encoder.', | |
| 'cond_stage_model.transformer.text_model.final_layer_norm.': 'cond_stage_model.transformer.final_layer_norm.', | |
| } | |
| def transform_checkpoint_dict_key(k): | |
| for text, replacement in checkpoint_dict_replacements.items(): | |
| if k.startswith(text): | |
| k = replacement + k[len(text):] | |
| return k | |
| def get_state_dict_from_checkpoint(pl_sd): | |
| pl_sd = pl_sd.pop("state_dict", pl_sd) | |
| pl_sd.pop("state_dict", None) | |
| sd = {} | |
| for k, v in pl_sd.items(): | |
| new_key = transform_checkpoint_dict_key(k) | |
| if new_key is not None: | |
| sd[new_key] = v | |
| pl_sd.clear() | |
| pl_sd.update(sd) | |
| return pl_sd | |
| def read_state_dict(checkpoint_file, print_global_state=False): | |
| _, extension = os.path.splitext(checkpoint_file) | |
| if extension.lower() == ".safetensors": | |
| pl_sd = load_file(checkpoint_file, device='cpu') | |
| else: | |
| pl_sd = torch.load(checkpoint_file, map_location='cpu') | |
| if print_global_state and "global_step" in pl_sd: | |
| print(f"Global Step: {pl_sd['global_step']}") | |
| sd = get_state_dict_from_checkpoint(pl_sd) | |
| return sd | |
| def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False): | |
| print(f"Loading model from {ckpt}") | |
| sd = read_state_dict(ckpt) | |
| model = instantiate_from_config(config.model) | |
| m, u = model.load_state_dict(sd, strict=False) | |
| if len(m) > 0 and verbose: | |
| print("missing keys:") | |
| print(m) | |
| if len(u) > 0 and verbose: | |
| print("unexpected keys:") | |
| print(u) | |
| if 'anything' in ckpt.lower() and vae_ckpt is None: | |
| vae_ckpt = 'models/anything-v4.0.vae.pt' | |
| if vae_ckpt is not None and vae_ckpt != 'None': | |
| print(f"Loading vae model from {vae_ckpt}") | |
| vae_sd = torch.load(vae_ckpt, map_location="cpu") | |
| if "global_step" in vae_sd: | |
| print(f"Global Step: {vae_sd['global_step']}") | |
| sd = vae_sd["state_dict"] | |
| m, u = model.first_stage_model.load_state_dict(sd, strict=False) | |
| if len(m) > 0 and verbose: | |
| print("missing keys:") | |
| print(m) | |
| if len(u) > 0 and verbose: | |
| print("unexpected keys:") | |
| print(u) | |
| model.cuda() | |
| model.eval() | |
| return model | |
| def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None): | |
| h, w = image.shape[:2] | |
| if resize_short_edge is not None: | |
| k = resize_short_edge / min(h, w) | |
| else: | |
| k = max_resolution / (h * w) | |
| k = k**0.5 | |
| h = int(np.round(h * k / 64)) * 64 | |
| w = int(np.round(w * k / 64)) * 64 | |
| image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) | |
| return image | |
| # make uc and prompt shapes match via padding for long prompts | |
| null_cond = None | |
| def fix_cond_shapes(model, prompt_condition, uc): | |
| if uc is None: | |
| return prompt_condition, uc | |
| global null_cond | |
| if null_cond is None: | |
| null_cond = model.get_learned_conditioning([""]) | |
| while prompt_condition.shape[1] > uc.shape[1]: | |
| uc = torch.cat((uc, null_cond.repeat((uc.shape[0], 1, 1))), axis=1) | |
| while prompt_condition.shape[1] < uc.shape[1]: | |
| prompt_condition = torch.cat((prompt_condition, null_cond.repeat((prompt_condition.shape[0], 1, 1))), axis=1) | |
| return prompt_condition, uc | |