Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,34 +6,46 @@ from transformers import pipeline
|
|
| 6 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
from docx import Document
|
| 8 |
import io
|
|
|
|
| 9 |
|
| 10 |
class CarbonCreditDocGenerator:
|
| 11 |
def __init__(self):
|
| 12 |
self.sbert_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 13 |
-
self.nlg_pipeline = pipeline("text-generation", model="gpt2", max_length=
|
| 14 |
-
|
| 15 |
-
# Load your knowledge base here
|
| 16 |
self.knowledge_base = self.load_knowledge_base()
|
| 17 |
|
| 18 |
def load_knowledge_base(self):
|
| 19 |
-
# This should load your carbon credit domain knowledge
|
| 20 |
return [
|
| 21 |
"Carbon credits represent the reduction of one metric ton of carbon dioxide emissions.",
|
| 22 |
"Afforestation projects involve planting trees in areas where there were none before.",
|
| 23 |
"The Verified Carbon Standard (VCS) is a widely recognized certification for carbon credits.",
|
| 24 |
"Carbon credit projects must demonstrate additionality, meaning the reductions wouldn't have occurred without the project.",
|
| 25 |
"Monitoring, reporting, and verification (MRV) are crucial components of carbon credit projects.",
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
]
|
| 28 |
|
| 29 |
def process_input_data(self, input_text):
|
| 30 |
-
|
| 31 |
-
lines = input_text.split('\n')
|
| 32 |
data = {}
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
return data
|
| 38 |
|
| 39 |
def retrieve_relevant_knowledge(self, query, top_k=3):
|
|
@@ -45,30 +57,31 @@ class CarbonCreditDocGenerator:
|
|
| 45 |
|
| 46 |
return [self.knowledge_base[i] for i in top_indices]
|
| 47 |
|
| 48 |
-
def generate_section_content(self, section_title, input_data, max_length=
|
| 49 |
query = f"Generate content for the '{section_title}' section of a carbon credit document."
|
| 50 |
relevant_knowledge = self.retrieve_relevant_knowledge(query)
|
| 51 |
|
| 52 |
-
|
|
|
|
| 53 |
prompt = f"{context}\n\nTask: {query}\n\nContent:"
|
| 54 |
|
| 55 |
generated_text = self.nlg_pipeline(prompt, max_length=max_length, num_return_sequences=1)[0]['generated_text']
|
| 56 |
|
| 57 |
-
|
| 58 |
-
corrected_text = self.apply_corrective_rag(generated_text, input_data, relevant_knowledge)
|
| 59 |
|
| 60 |
return corrected_text
|
| 61 |
|
| 62 |
def apply_corrective_rag(self, generated_text, input_data, relevant_knowledge):
|
| 63 |
-
# This is a simplified version of corrective RAG
|
| 64 |
corrected_text = generated_text
|
| 65 |
|
| 66 |
-
# Ensure all input data is represented
|
| 67 |
for key, value in input_data.items():
|
| 68 |
-
if value
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
corrected_text += f" {key}: {value}."
|
| 70 |
|
| 71 |
-
# Ensure relevant knowledge is incorporated
|
| 72 |
for knowledge in relevant_knowledge:
|
| 73 |
if knowledge.lower() not in corrected_text.lower():
|
| 74 |
corrected_text += f" {knowledge}"
|
|
@@ -82,17 +95,14 @@ class CarbonCreditDocGenerator:
|
|
| 82 |
input_data = self.process_input_data(input_text)
|
| 83 |
|
| 84 |
sections = [
|
| 85 |
-
"
|
| 86 |
-
"
|
| 87 |
-
"
|
| 88 |
-
"
|
| 89 |
-
"
|
| 90 |
-
"
|
| 91 |
-
"
|
| 92 |
-
"
|
| 93 |
-
"Legal Framework",
|
| 94 |
-
"Accountability Measures",
|
| 95 |
-
"Contact Information"
|
| 96 |
]
|
| 97 |
|
| 98 |
for section in sections:
|
|
@@ -104,41 +114,57 @@ class CarbonCreditDocGenerator:
|
|
| 104 |
|
| 105 |
def generate_document(self, input_text):
|
| 106 |
doc = self.create_document(input_text)
|
| 107 |
-
|
| 108 |
-
# Save the document to a BytesIO object
|
| 109 |
doc_io = io.BytesIO()
|
| 110 |
doc.save(doc_io)
|
| 111 |
doc_io.seek(0)
|
| 112 |
-
|
| 113 |
return doc_io
|
| 114 |
|
| 115 |
# Streamlit app
|
| 116 |
def main():
|
|
|
|
| 117 |
st.title("Carbon Credit Document Generator")
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
if
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
generator = CarbonCreditDocGenerator()
|
| 129 |
-
|
| 130 |
-
with st.spinner("Generating document..."):
|
| 131 |
-
doc_io = generator.generate_document(input_text)
|
| 132 |
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
label="Download Carbon Credit Document",
|
| 138 |
-
data=doc_io.getvalue(),
|
| 139 |
-
file_name="carbon_credit_document.docx",
|
| 140 |
-
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 141 |
-
)
|
| 142 |
|
| 143 |
if __name__ == "__main__":
|
| 144 |
main()
|
|
|
|
| 6 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
from docx import Document
|
| 8 |
import io
|
| 9 |
+
import re
|
| 10 |
|
| 11 |
class CarbonCreditDocGenerator:
|
| 12 |
def __init__(self):
|
| 13 |
self.sbert_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 14 |
+
self.nlg_pipeline = pipeline("text-generation", model="gpt2", max_length=1000)
|
|
|
|
|
|
|
| 15 |
self.knowledge_base = self.load_knowledge_base()
|
| 16 |
|
| 17 |
def load_knowledge_base(self):
|
|
|
|
| 18 |
return [
|
| 19 |
"Carbon credits represent the reduction of one metric ton of carbon dioxide emissions.",
|
| 20 |
"Afforestation projects involve planting trees in areas where there were none before.",
|
| 21 |
"The Verified Carbon Standard (VCS) is a widely recognized certification for carbon credits.",
|
| 22 |
"Carbon credit projects must demonstrate additionality, meaning the reductions wouldn't have occurred without the project.",
|
| 23 |
"Monitoring, reporting, and verification (MRV) are crucial components of carbon credit projects.",
|
| 24 |
+
"Project developers must provide detailed information about project location, type, and expected carbon sequestration.",
|
| 25 |
+
"Carbon credit pricing can vary based on project type, location, and additional benefits.",
|
| 26 |
+
"Environmental Impact Assessments (EIA) are often required for carbon credit projects.",
|
| 27 |
+
"Community engagement and social benefits are important aspects of many carbon credit projects.",
|
| 28 |
+
"Risk assessment and mitigation strategies are crucial for project success and credibility."
|
| 29 |
]
|
| 30 |
|
| 31 |
def process_input_data(self, input_text):
|
| 32 |
+
sections = re.split(r'\d+\.\s+', input_text)[1:] # Split by numbered sections
|
|
|
|
| 33 |
data = {}
|
| 34 |
+
current_section = ""
|
| 35 |
+
for section in sections:
|
| 36 |
+
lines = section.strip().split('\n')
|
| 37 |
+
section_title = lines[0].strip()
|
| 38 |
+
current_section = section_title
|
| 39 |
+
data[current_section] = {}
|
| 40 |
+
for line in lines[1:]:
|
| 41 |
+
if ':' in line:
|
| 42 |
+
key, value = line.split(':', 1)
|
| 43 |
+
data[current_section][key.strip()] = value.strip()
|
| 44 |
+
else:
|
| 45 |
+
# Append to the last key if no colon is found
|
| 46 |
+
if data[current_section]:
|
| 47 |
+
last_key = list(data[current_section].keys())[-1]
|
| 48 |
+
data[current_section][last_key] += " " + line.strip()
|
| 49 |
return data
|
| 50 |
|
| 51 |
def retrieve_relevant_knowledge(self, query, top_k=3):
|
|
|
|
| 57 |
|
| 58 |
return [self.knowledge_base[i] for i in top_indices]
|
| 59 |
|
| 60 |
+
def generate_section_content(self, section_title, input_data, max_length=1000):
|
| 61 |
query = f"Generate content for the '{section_title}' section of a carbon credit document."
|
| 62 |
relevant_knowledge = self.retrieve_relevant_knowledge(query)
|
| 63 |
|
| 64 |
+
section_data = input_data.get(section_title, input_data)
|
| 65 |
+
context = f"Input data: {section_data}\n\nRelevant knowledge: {' '.join(relevant_knowledge)}"
|
| 66 |
prompt = f"{context}\n\nTask: {query}\n\nContent:"
|
| 67 |
|
| 68 |
generated_text = self.nlg_pipeline(prompt, max_length=max_length, num_return_sequences=1)[0]['generated_text']
|
| 69 |
|
| 70 |
+
corrected_text = self.apply_corrective_rag(generated_text, section_data, relevant_knowledge)
|
|
|
|
| 71 |
|
| 72 |
return corrected_text
|
| 73 |
|
| 74 |
def apply_corrective_rag(self, generated_text, input_data, relevant_knowledge):
|
|
|
|
| 75 |
corrected_text = generated_text
|
| 76 |
|
|
|
|
| 77 |
for key, value in input_data.items():
|
| 78 |
+
if isinstance(value, dict):
|
| 79 |
+
for sub_key, sub_value in value.items():
|
| 80 |
+
if sub_value.lower() not in corrected_text.lower():
|
| 81 |
+
corrected_text += f" {sub_key}: {sub_value}."
|
| 82 |
+
elif value.lower() not in corrected_text.lower():
|
| 83 |
corrected_text += f" {key}: {value}."
|
| 84 |
|
|
|
|
| 85 |
for knowledge in relevant_knowledge:
|
| 86 |
if knowledge.lower() not in corrected_text.lower():
|
| 87 |
corrected_text += f" {knowledge}"
|
|
|
|
| 95 |
input_data = self.process_input_data(input_text)
|
| 96 |
|
| 97 |
sections = [
|
| 98 |
+
"Project Overview",
|
| 99 |
+
"Seller/Proponent Information",
|
| 100 |
+
"Carbon Credit Specifications",
|
| 101 |
+
"Financial & Pricing Information",
|
| 102 |
+
"Project Impact and Sustainability",
|
| 103 |
+
"Risks & Mitigation Strategies",
|
| 104 |
+
"Supporting Documentation",
|
| 105 |
+
"Declarations and Acknowledgements"
|
|
|
|
|
|
|
|
|
|
| 106 |
]
|
| 107 |
|
| 108 |
for section in sections:
|
|
|
|
| 114 |
|
| 115 |
def generate_document(self, input_text):
|
| 116 |
doc = self.create_document(input_text)
|
|
|
|
|
|
|
| 117 |
doc_io = io.BytesIO()
|
| 118 |
doc.save(doc_io)
|
| 119 |
doc_io.seek(0)
|
|
|
|
| 120 |
return doc_io
|
| 121 |
|
| 122 |
# Streamlit app
|
| 123 |
def main():
|
| 124 |
+
st.set_page_config(page_title="Carbon Credit Document Generator", page_icon="🌿")
|
| 125 |
st.title("Carbon Credit Document Generator")
|
| 126 |
|
| 127 |
+
st.markdown("""
|
| 128 |
+
This app generates a comprehensive Carbon Credit Project Document based on your input.
|
| 129 |
+
Upload a text file or paste your project details below.
|
| 130 |
+
""")
|
| 131 |
+
|
| 132 |
+
input_method = st.radio("Choose input method:", ("Upload File", "Paste Text"))
|
| 133 |
+
|
| 134 |
+
if input_method == "Upload File":
|
| 135 |
+
uploaded_file = st.file_uploader("Choose a text file", type="txt")
|
| 136 |
+
if uploaded_file is not None:
|
| 137 |
+
input_text = uploaded_file.read().decode("utf-8")
|
| 138 |
+
st.text_area("File Contents (Read-only)", input_text, height=300, disabled=True)
|
| 139 |
+
else:
|
| 140 |
+
input_text = st.text_area("Paste your project details here:", height=400, help="Enter your project details in a structured format, similar to the Carbon Credit Project Submission Form.")
|
| 141 |
|
| 142 |
+
if st.button("Generate Document"):
|
| 143 |
+
if not input_text:
|
| 144 |
+
st.error("Please provide input data before generating the document.")
|
| 145 |
+
else:
|
| 146 |
+
try:
|
| 147 |
+
generator = CarbonCreditDocGenerator()
|
| 148 |
+
|
| 149 |
+
with st.spinner("Generating document... This may take a few moments."):
|
| 150 |
+
doc_io = generator.generate_document(input_text)
|
| 151 |
|
| 152 |
+
st.success("Document generated successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
st.download_button(
|
| 155 |
+
label="📥 Download Carbon Credit Document",
|
| 156 |
+
data=doc_io.getvalue(),
|
| 157 |
+
file_name="carbon_credit_document.docx",
|
| 158 |
+
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
st.info("Your document is ready for download. Click the button above to save it.")
|
| 162 |
+
except Exception as e:
|
| 163 |
+
st.error(f"An error occurred while generating the document: {str(e)}")
|
| 164 |
+
st.info("Please try again or contact support if the problem persists.")
|
| 165 |
|
| 166 |
+
st.markdown("---")
|
| 167 |
+
st.markdown("Developed with ❤️ by Your Company Name")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
if __name__ == "__main__":
|
| 170 |
main()
|