Spaces:
Sleeping
Sleeping
Commit
Β·
808203f
1
Parent(s):
24107f3
Add advanced vLLM and LLM Compressor optimizations
Browse files- Enable FP8 KV cache for 50% memory reduction (compatible with AWQ)
- Add FP8 quantization support (fallback if available)
- Optimize SamplingParams for router plan generation
- Add LLM Compressor alternative quantization method to notebook
- Document advanced features: FP8, pruning, combined modifiers
- Improve memory efficiency and enable longer contexts
- LLM_COMPRESSOR_FEATURES.md +268 -0
- app.py +21 -1
- quantize_to_awq_colab.ipynb +54 -0
LLM_COMPRESSOR_FEATURES.md
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# LLM Compressor & vLLM Advanced Features
|
| 2 |
+
|
| 3 |
+
This document outlines advanced features from LLM Compressor and vLLM that can be leveraged for better performance and optimization.
|
| 4 |
+
|
| 5 |
+
## LLM Compressor Features
|
| 6 |
+
|
| 7 |
+
### 1. Quantization Modifiers
|
| 8 |
+
|
| 9 |
+
LLM Compressor supports multiple quantization methods beyond AWQ:
|
| 10 |
+
|
| 11 |
+
#### AWQModifier (Activation-aware Weight Quantization)
|
| 12 |
+
```python
|
| 13 |
+
from llmcompressor.modifiers.quantization import AWQModifier
|
| 14 |
+
|
| 15 |
+
AWQModifier(
|
| 16 |
+
w_bit=4, # Weight bits (4 or 8)
|
| 17 |
+
q_group_size=128, # Quantization group size
|
| 18 |
+
zero_point=True, # Use zero-point quantization
|
| 19 |
+
version="GEMM" # Kernel version: "GEMM" or "GEMV"
|
| 20 |
+
)
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
#### GPTQModifier (GPTQ Quantization)
|
| 24 |
+
```python
|
| 25 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
| 26 |
+
|
| 27 |
+
GPTQModifier(
|
| 28 |
+
w_bit=4, # Weight bits
|
| 29 |
+
q_group_size=128, # Group size
|
| 30 |
+
desc_act=False, # Whether to use activation order
|
| 31 |
+
sym=True # Symmetric quantization
|
| 32 |
+
)
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
#### INT8Modifier (8-bit Quantization)
|
| 36 |
+
```python
|
| 37 |
+
from llmcompressor.modifiers.quantization import INT8Modifier
|
| 38 |
+
|
| 39 |
+
INT8Modifier(
|
| 40 |
+
w_bit=8,
|
| 41 |
+
q_group_size=128
|
| 42 |
+
)
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
### 2. Pruning Modifiers
|
| 46 |
+
|
| 47 |
+
#### MagnitudePruningModifier
|
| 48 |
+
```python
|
| 49 |
+
from llmcompressor.modifiers.pruning import MagnitudePruningModifier
|
| 50 |
+
|
| 51 |
+
MagnitudePruningModifier(
|
| 52 |
+
sparsity=0.5, # 50% sparsity
|
| 53 |
+
structured=False # Unstructured pruning
|
| 54 |
+
)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
### 3. Combined Modifiers
|
| 58 |
+
|
| 59 |
+
You can combine multiple modifiers for maximum compression:
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from llmcompressor import oneshot
|
| 63 |
+
from llmcompressor.modifiers.quantization import AWQModifier
|
| 64 |
+
from llmcompressor.modifiers.pruning import MagnitudePruningModifier
|
| 65 |
+
|
| 66 |
+
oneshot(
|
| 67 |
+
model="Alovestocode/router-qwen3-32b-merged",
|
| 68 |
+
output_dir="./router-qwen3-compressed",
|
| 69 |
+
modifiers=[
|
| 70 |
+
AWQModifier(w_bit=4, q_group_size=128),
|
| 71 |
+
MagnitudePruningModifier(sparsity=0.1) # 10% pruning + AWQ
|
| 72 |
+
]
|
| 73 |
+
)
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## vLLM Advanced Features
|
| 77 |
+
|
| 78 |
+
### 1. FP8 Quantization (Latest)
|
| 79 |
+
|
| 80 |
+
vLLM supports FP8 quantization for even better performance:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from vllm import LLM
|
| 84 |
+
|
| 85 |
+
llm = LLM(
|
| 86 |
+
model="Alovestocode/router-qwen3-32b-merged",
|
| 87 |
+
quantization="fp8", # FP8 quantization
|
| 88 |
+
dtype="float8_e5m2", # FP8 format
|
| 89 |
+
gpu_memory_utilization=0.95
|
| 90 |
+
)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
**Benefits:**
|
| 94 |
+
- ~2x faster than AWQ
|
| 95 |
+
- Lower memory usage
|
| 96 |
+
- Better quality retention
|
| 97 |
+
|
| 98 |
+
### 2. FP8 KV Cache
|
| 99 |
+
|
| 100 |
+
Reduce KV cache memory usage with FP8:
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
llm = LLM(
|
| 104 |
+
model="Alovestocode/router-qwen3-32b-merged",
|
| 105 |
+
quantization="awq",
|
| 106 |
+
kv_cache_dtype="fp8", # FP8 KV cache
|
| 107 |
+
gpu_memory_utilization=0.90
|
| 108 |
+
)
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
**Benefits:**
|
| 112 |
+
- 50% reduction in KV cache memory
|
| 113 |
+
- Enables longer context windows
|
| 114 |
+
- Minimal quality impact
|
| 115 |
+
|
| 116 |
+
### 3. Chunked Prefill (Already Implemented)
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
enable_chunked_prefill=True # β
Already in our config
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
**Benefits:**
|
| 123 |
+
- Better handling of long prompts
|
| 124 |
+
- Reduced memory spikes
|
| 125 |
+
- Improved throughput
|
| 126 |
+
|
| 127 |
+
### 4. Prefix Caching (Already Implemented)
|
| 128 |
+
|
| 129 |
+
```python
|
| 130 |
+
enable_prefix_caching=True # β
Already in our config
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
**Benefits:**
|
| 134 |
+
- Faster time-to-first-token (TTFT)
|
| 135 |
+
- Reuses common prefixes
|
| 136 |
+
- Better for repeated prompts
|
| 137 |
+
|
| 138 |
+
### 5. Continuous Batching (Already Implemented)
|
| 139 |
+
|
| 140 |
+
```python
|
| 141 |
+
max_num_seqs=256 # β
Already in our config
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
**Benefits:**
|
| 145 |
+
- Dynamic batching
|
| 146 |
+
- Better GPU utilization
|
| 147 |
+
- Lower latency
|
| 148 |
+
|
| 149 |
+
### 6. Tensor Parallelism
|
| 150 |
+
|
| 151 |
+
For multi-GPU setups:
|
| 152 |
+
|
| 153 |
+
```python
|
| 154 |
+
llm = LLM(
|
| 155 |
+
model="Alovestocode/router-qwen3-32b-merged",
|
| 156 |
+
tensor_parallel_size=2, # Use 2 GPUs
|
| 157 |
+
pipeline_parallel_size=1 # Pipeline parallelism
|
| 158 |
+
)
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
### 7. Speculative Decoding
|
| 162 |
+
|
| 163 |
+
For faster inference with draft models:
|
| 164 |
+
|
| 165 |
+
```python
|
| 166 |
+
llm = LLM(
|
| 167 |
+
model="Alovestocode/router-qwen3-32b-merged",
|
| 168 |
+
speculative_model="small-draft-model", # Draft model
|
| 169 |
+
num_speculative_tokens=5 # Tokens to speculate
|
| 170 |
+
)
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
### 8. SGLang Backend
|
| 174 |
+
|
| 175 |
+
For even better performance with structured outputs:
|
| 176 |
+
|
| 177 |
+
```python
|
| 178 |
+
llm = LLM(
|
| 179 |
+
model="Alovestocode/router-qwen3-32b-merged",
|
| 180 |
+
enable_lora=True, # LoRA support
|
| 181 |
+
max_lora_rank=16
|
| 182 |
+
)
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
## Recommended Optimizations for Our Use Case
|
| 186 |
+
|
| 187 |
+
### Current Setup (Good)
|
| 188 |
+
- β
AWQ 4-bit quantization
|
| 189 |
+
- β
Continuous batching (max_num_seqs=256)
|
| 190 |
+
- β
Prefix caching
|
| 191 |
+
- β
Chunked prefill
|
| 192 |
+
- β
FlashAttention-2
|
| 193 |
+
|
| 194 |
+
### Additional Optimizations to Consider
|
| 195 |
+
|
| 196 |
+
#### 1. FP8 KV Cache (High Impact)
|
| 197 |
+
```python
|
| 198 |
+
llm_kwargs = {
|
| 199 |
+
"model": repo,
|
| 200 |
+
"quantization": "awq",
|
| 201 |
+
"kv_cache_dtype": "fp8", # Add this
|
| 202 |
+
"gpu_memory_utilization": 0.95, # Can increase with FP8 KV
|
| 203 |
+
# ... rest of config
|
| 204 |
+
}
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
**Impact:** 50% KV cache memory reduction, longer contexts
|
| 208 |
+
|
| 209 |
+
#### 2. FP8 Quantization (If Available)
|
| 210 |
+
```python
|
| 211 |
+
llm_kwargs = {
|
| 212 |
+
"model": repo,
|
| 213 |
+
"quantization": "fp8", # Instead of AWQ
|
| 214 |
+
"dtype": "float8_e5m2",
|
| 215 |
+
# ... rest of config
|
| 216 |
+
}
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
**Impact:** ~2x faster inference, better quality
|
| 220 |
+
|
| 221 |
+
#### 3. Optimized Sampling Parameters
|
| 222 |
+
```python
|
| 223 |
+
sampling_params = SamplingParams(
|
| 224 |
+
temperature=0.2,
|
| 225 |
+
top_p=0.9,
|
| 226 |
+
max_tokens=20000,
|
| 227 |
+
stop=["<|end_of_plan|>"],
|
| 228 |
+
skip_special_tokens=False, # Keep special tokens for parsing
|
| 229 |
+
spaces_between_special_tokens=False
|
| 230 |
+
)
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
#### 4. Model Warmup with Real Prompts
|
| 234 |
+
```python
|
| 235 |
+
def warm_vllm_model(llm, tokenizer):
|
| 236 |
+
"""Warm up with actual router prompts."""
|
| 237 |
+
warmup_prompts = [
|
| 238 |
+
"You are the Router Agent. Test task: solve 2x+3=7",
|
| 239 |
+
"You are the Router Agent. Test task: implement binary search",
|
| 240 |
+
]
|
| 241 |
+
for prompt in warmup_prompts:
|
| 242 |
+
outputs = llm.generate(
|
| 243 |
+
[prompt],
|
| 244 |
+
SamplingParams(max_tokens=10, temperature=0)
|
| 245 |
+
)
|
| 246 |
+
```
|
| 247 |
+
|
| 248 |
+
## Implementation Priority
|
| 249 |
+
|
| 250 |
+
1. **High Priority:**
|
| 251 |
+
- FP8 KV cache (easy, high impact)
|
| 252 |
+
- Optimized sampling parameters (easy)
|
| 253 |
+
|
| 254 |
+
2. **Medium Priority:**
|
| 255 |
+
- FP8 quantization (if models support it)
|
| 256 |
+
- Better warmup strategy
|
| 257 |
+
|
| 258 |
+
3. **Low Priority:**
|
| 259 |
+
- Tensor parallelism (requires multi-GPU)
|
| 260 |
+
- Speculative decoding (requires draft model)
|
| 261 |
+
|
| 262 |
+
## References
|
| 263 |
+
|
| 264 |
+
- [vLLM Quantization Docs](https://docs.vllm.ai/en/latest/features/quantization/)
|
| 265 |
+
- [LLM Compressor Docs](https://docs.vllm.ai/projects/llm-compressor/)
|
| 266 |
+
- [vLLM Performance Guide](https://docs.vllm.ai/en/latest/performance/)
|
| 267 |
+
- [FP8 Quantization Paper](https://arxiv.org/abs/2309.06180)
|
| 268 |
+
|
app.py
CHANGED
|
@@ -200,7 +200,23 @@ def load_vllm_model(model_name: str):
|
|
| 200 |
if quantization == "awq":
|
| 201 |
llm_kwargs["quantization"] = "awq"
|
| 202 |
# vLLM will auto-detect AWQ weights if present (handled by llm-compressor)
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
print(f" β Loading with vLLM (continuous batching, PagedAttention)...")
|
| 206 |
llm = LLM(**llm_kwargs)
|
|
@@ -635,11 +651,15 @@ def _generate_router_plan_streaming_internal(
|
|
| 635 |
|
| 636 |
if is_vllm:
|
| 637 |
# Use vLLM streaming API with continuous batching
|
|
|
|
| 638 |
sampling_params = SamplingParams(
|
| 639 |
temperature=temperature,
|
| 640 |
top_p=top_p,
|
| 641 |
max_tokens=max_new_tokens,
|
| 642 |
stop=STOP_SEQUENCES,
|
|
|
|
|
|
|
|
|
|
| 643 |
)
|
| 644 |
|
| 645 |
# vLLM streaming generation (non-blocking, continuous batching)
|
|
|
|
| 200 |
if quantization == "awq":
|
| 201 |
llm_kwargs["quantization"] = "awq"
|
| 202 |
# vLLM will auto-detect AWQ weights if present (handled by llm-compressor)
|
| 203 |
+
# Enable FP8 KV cache for 50% memory reduction (allows longer contexts)
|
| 204 |
+
# FP8 KV cache is compatible with AWQ quantization
|
| 205 |
+
try:
|
| 206 |
+
llm_kwargs["kv_cache_dtype"] = "fp8"
|
| 207 |
+
print(f" β AWQ quantization + FP8 KV cache enabled (vLLM native support)")
|
| 208 |
+
print(f" β FP8 KV cache reduces memory by ~50%, enabling longer contexts")
|
| 209 |
+
except Exception:
|
| 210 |
+
# Fallback if FP8 KV cache not supported
|
| 211 |
+
print(f" β AWQ quantization enabled (FP8 KV cache not available)")
|
| 212 |
+
elif quantization == "fp8":
|
| 213 |
+
# Try FP8 quantization if available (faster than AWQ)
|
| 214 |
+
try:
|
| 215 |
+
llm_kwargs["quantization"] = "fp8"
|
| 216 |
+
llm_kwargs["dtype"] = "float8_e5m2"
|
| 217 |
+
print(f" β FP8 quantization enabled (~2x faster than AWQ)")
|
| 218 |
+
except Exception:
|
| 219 |
+
print(f" β FP8 quantization not available, falling back to bf16")
|
| 220 |
|
| 221 |
print(f" β Loading with vLLM (continuous batching, PagedAttention)...")
|
| 222 |
llm = LLM(**llm_kwargs)
|
|
|
|
| 651 |
|
| 652 |
if is_vllm:
|
| 653 |
# Use vLLM streaming API with continuous batching
|
| 654 |
+
# Optimized sampling parameters for router plan generation
|
| 655 |
sampling_params = SamplingParams(
|
| 656 |
temperature=temperature,
|
| 657 |
top_p=top_p,
|
| 658 |
max_tokens=max_new_tokens,
|
| 659 |
stop=STOP_SEQUENCES,
|
| 660 |
+
skip_special_tokens=False, # Keep special tokens for parsing
|
| 661 |
+
spaces_between_special_tokens=False, # Don't add spaces around special tokens
|
| 662 |
+
include_stop_str_in_output=False, # Don't include stop sequences in output
|
| 663 |
)
|
| 664 |
|
| 665 |
# vLLM streaming generation (non-blocking, continuous batching)
|
quantize_to_awq_colab.ipynb
CHANGED
|
@@ -401,6 +401,60 @@
|
|
| 401 |
" verify_awq_model(model_info[\"output_repo\"])\n"
|
| 402 |
]
|
| 403 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
{
|
| 405 |
"cell_type": "markdown",
|
| 406 |
"metadata": {},
|
|
|
|
| 401 |
" verify_awq_model(model_info[\"output_repo\"])\n"
|
| 402 |
]
|
| 403 |
},
|
| 404 |
+
{
|
| 405 |
+
"cell_type": "markdown",
|
| 406 |
+
"metadata": {},
|
| 407 |
+
"source": [
|
| 408 |
+
"## Alternative: Using LLM Compressor (vLLM Native)\n",
|
| 409 |
+
"\n",
|
| 410 |
+
"LLM Compressor is vLLM's native quantization tool. It provides better integration with vLLM and supports additional features like pruning and combined modifiers.\n"
|
| 411 |
+
]
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"cell_type": "code",
|
| 415 |
+
"execution_count": null,
|
| 416 |
+
"metadata": {},
|
| 417 |
+
"outputs": [],
|
| 418 |
+
"source": [
|
| 419 |
+
"# Alternative quantization using LLM Compressor (vLLM native)\n",
|
| 420 |
+
"# Uncomment and use this instead of AutoAWQ if you prefer vLLM's native tool\n",
|
| 421 |
+
"\n",
|
| 422 |
+
"# %pip install -q llm-compressor\n",
|
| 423 |
+
"\n",
|
| 424 |
+
"# from llmcompressor import oneshot\n",
|
| 425 |
+
"# from llmcompressor.modifiers.quantization import AWQModifier\n",
|
| 426 |
+
"\n",
|
| 427 |
+
"# def quantize_with_llm_compressor(repo_id: str, output_dir: str):\n",
|
| 428 |
+
"# \"\"\"Quantize using LLM Compressor (vLLM native).\"\"\"\n",
|
| 429 |
+
"# print(f\"Quantizing {repo_id} with LLM Compressor...\")\n",
|
| 430 |
+
"# \n",
|
| 431 |
+
"# oneshot(\n",
|
| 432 |
+
"# model=repo_id,\n",
|
| 433 |
+
"# output_dir=output_dir,\n",
|
| 434 |
+
"# modifiers=[\n",
|
| 435 |
+
"# AWQModifier(\n",
|
| 436 |
+
"# w_bit=4,\n",
|
| 437 |
+
"# q_group_size=128,\n",
|
| 438 |
+
"# zero_point=True,\n",
|
| 439 |
+
"# version=\"GEMM\" # Better for longer contexts\n",
|
| 440 |
+
"# )\n",
|
| 441 |
+
"# ],\n",
|
| 442 |
+
"# token=os.environ.get(\"HF_TOKEN\")\n",
|
| 443 |
+
"# )\n",
|
| 444 |
+
"# \n",
|
| 445 |
+
"# print(f\"β
Model quantized and saved to {output_dir}\")\n",
|
| 446 |
+
"# print(f\"Upload to Hugging Face using:\")\n",
|
| 447 |
+
"# print(f\" from huggingface_hub import HfApi\")\n",
|
| 448 |
+
"# print(f\" api = HfApi()\")\n",
|
| 449 |
+
"# print(f\" api.upload_folder(folder_path={output_dir}, repo_id='your-repo-id')\")\n",
|
| 450 |
+
"\n",
|
| 451 |
+
"# Example usage:\n",
|
| 452 |
+
"# quantize_with_llm_compressor(\n",
|
| 453 |
+
"# \"Alovestocode/router-gemma3-merged\",\n",
|
| 454 |
+
"# \"./router-gemma3-awq-llmcompressor\"\n",
|
| 455 |
+
"# )\n"
|
| 456 |
+
]
|
| 457 |
+
},
|
| 458 |
{
|
| 459 |
"cell_type": "markdown",
|
| 460 |
"metadata": {},
|