Spaces:
Sleeping
Sleeping
Commit
·
a79bc8f
1
Parent(s):
b2bf767
Add Colab notebook for AWQ quantization of router models
Browse files- Complete quantization pipeline for Gemma3 and Qwen3 models
- Uses AutoAWQ for reliable quantization
- Includes verification and upload steps
- Documentation with troubleshooting guide
- QUANTIZE_AWQ.md +110 -0
- quantize_to_awq_colab.ipynb +366 -0
QUANTIZE_AWQ.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# AWQ Quantization Guide for Router Models
|
| 2 |
+
|
| 3 |
+
This guide explains how to quantize the CourseGPT-Pro router models to AWQ (Activation-aware Weight Quantization) format for efficient inference.
|
| 4 |
+
|
| 5 |
+
## Models to Quantize
|
| 6 |
+
|
| 7 |
+
- [router-gemma3-merged](https://huggingface.co/Alovestocode/router-gemma3-merged) (27B, BF16)
|
| 8 |
+
- [router-qwen3-32b-merged](https://huggingface.co/Alovestocode/router-qwen3-32b-merged) (33B, BF16)
|
| 9 |
+
|
| 10 |
+
## Quick Start: Google Colab
|
| 11 |
+
|
| 12 |
+
1. **Open the Colab notebook**: `quantize_to_awq_colab.ipynb`
|
| 13 |
+
2. **Set runtime to GPU**: Runtime → Change runtime type → GPU (A100 recommended)
|
| 14 |
+
3. **Add your HF token**: Replace `your_hf_token_here` in cell 2
|
| 15 |
+
4. **Run all cells**: The notebook will quantize both models
|
| 16 |
+
|
| 17 |
+
## Requirements
|
| 18 |
+
|
| 19 |
+
- **GPU**: A100 (40GB+) or H100 recommended for 27B-33B models
|
| 20 |
+
- **Time**: ~30-60 minutes per model
|
| 21 |
+
- **Disk Space**: ~20-30GB per quantized model
|
| 22 |
+
- **HF Token**: With write access to `Alovestocode` namespace
|
| 23 |
+
|
| 24 |
+
## AWQ Configuration
|
| 25 |
+
|
| 26 |
+
The notebook uses optimized AWQ settings:
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
AWQ_CONFIG = {
|
| 30 |
+
"w_bit": 4, # 4-bit quantization
|
| 31 |
+
"q_group_size": 128, # Group size for quantization
|
| 32 |
+
"zero_point": True, # Use zero-point quantization
|
| 33 |
+
"version": "GEMM", # GEMM kernel (better for longer contexts)
|
| 34 |
+
}
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
## Output Repositories
|
| 38 |
+
|
| 39 |
+
By default, quantized models are saved to:
|
| 40 |
+
- `Alovestocode/router-gemma3-merged-awq`
|
| 41 |
+
- `Alovestocode/router-qwen3-32b-merged-awq`
|
| 42 |
+
|
| 43 |
+
You can modify the `output_repo` in the configuration to upload to existing repos or different names.
|
| 44 |
+
|
| 45 |
+
## Verification
|
| 46 |
+
|
| 47 |
+
After quantization, the notebook includes a verification step that:
|
| 48 |
+
1. Loads the AWQ model
|
| 49 |
+
2. Tests generation
|
| 50 |
+
3. Checks parameter count
|
| 51 |
+
4. Verifies model integrity
|
| 52 |
+
|
| 53 |
+
## Usage After Quantization
|
| 54 |
+
|
| 55 |
+
Update your `app.py` to use the AWQ models:
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
MODELS = {
|
| 59 |
+
"Router-Gemma3-27B-AWQ": {
|
| 60 |
+
"repo_id": "Alovestocode/router-gemma3-merged-awq",
|
| 61 |
+
"quantization": "awq"
|
| 62 |
+
},
|
| 63 |
+
"Router-Qwen3-32B-AWQ": {
|
| 64 |
+
"repo_id": "Alovestocode/router-qwen3-32b-merged-awq",
|
| 65 |
+
"quantization": "awq"
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
## Alternative: Using llm-compressor (vLLM)
|
| 71 |
+
|
| 72 |
+
If you prefer using llm-compressor (vLLM's quantization tool):
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
from llmcompressor import oneshot
|
| 76 |
+
from llmcompressor.modifiers.quantization import AWQModifier
|
| 77 |
+
|
| 78 |
+
# Quantize model
|
| 79 |
+
oneshot(
|
| 80 |
+
model="Alovestocode/router-gemma3-merged",
|
| 81 |
+
output_dir="./router-gemma3-awq",
|
| 82 |
+
modifiers=[AWQModifier(w_bit=4, q_group_size=128)]
|
| 83 |
+
)
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
However, AutoAWQ (used in the notebook) is more mature and widely tested.
|
| 87 |
+
|
| 88 |
+
## Troubleshooting
|
| 89 |
+
|
| 90 |
+
### Out of Memory
|
| 91 |
+
- Use a larger GPU (A100 80GB or H100)
|
| 92 |
+
- Reduce `calibration_dataset_size` to 64 or 32
|
| 93 |
+
- Quantize models one at a time
|
| 94 |
+
|
| 95 |
+
### Slow Quantization
|
| 96 |
+
- Ensure you're using a high-end GPU (A100/H100)
|
| 97 |
+
- Check that CUDA is properly configured
|
| 98 |
+
- Consider using multiple GPUs with `tensor_parallel_size`
|
| 99 |
+
|
| 100 |
+
### Upload Failures
|
| 101 |
+
- Verify HF token has write access
|
| 102 |
+
- Check repository exists or can be created
|
| 103 |
+
- Ensure sufficient disk space
|
| 104 |
+
|
| 105 |
+
## References
|
| 106 |
+
|
| 107 |
+
- [AutoAWQ Documentation](https://github.com/casper-hansen/AutoAWQ)
|
| 108 |
+
- [AWQ Paper](https://arxiv.org/abs/2306.00978)
|
| 109 |
+
- [vLLM AWQ Support](https://docs.vllm.ai/en/latest/features/quantization/awq.html)
|
| 110 |
+
|
quantize_to_awq_colab.ipynb
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Router Models AWQ Quantization\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This notebook quantizes the CourseGPT-Pro router models to AWQ (Activation-aware Weight Quantization) format for efficient inference.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"**Models to quantize:**\n",
|
| 12 |
+
"- `Alovestocode/router-gemma3-merged` (27B)\n",
|
| 13 |
+
"- `Alovestocode/router-qwen3-32b-merged` (33B)\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"**Output:** AWQ-quantized models ready for vLLM or Transformers inference.\n"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "markdown",
|
| 20 |
+
"metadata": {},
|
| 21 |
+
"source": [
|
| 22 |
+
"## 1. Install Dependencies\n"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": null,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"# Install required packages\n",
|
| 32 |
+
"!pip install -q autoawq transformers accelerate huggingface_hub\n",
|
| 33 |
+
"!pip install -q torch --index-url https://download.pytorch.org/whl/cu118\n"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "markdown",
|
| 38 |
+
"metadata": {},
|
| 39 |
+
"source": [
|
| 40 |
+
"## 2. Authenticate with Hugging Face\n"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "code",
|
| 45 |
+
"execution_count": null,
|
| 46 |
+
"metadata": {},
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"source": [
|
| 49 |
+
"from huggingface_hub import login\n",
|
| 50 |
+
"import os\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"# Login to Hugging Face (you'll need a token with write access)\n",
|
| 53 |
+
"# Get your token from: https://huggingface.co/settings/tokens\n",
|
| 54 |
+
"HF_TOKEN = \"your_hf_token_here\" # Replace with your token\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"login(token=HF_TOKEN)\n",
|
| 57 |
+
"os.environ[\"HF_TOKEN\"] = HF_TOKEN\n"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "markdown",
|
| 62 |
+
"metadata": {},
|
| 63 |
+
"source": [
|
| 64 |
+
"## 3. Configuration\n"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": null,
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"# Model configurations\n",
|
| 74 |
+
"MODELS_TO_QUANTIZE = {\n",
|
| 75 |
+
" \"router-gemma3-merged\": {\n",
|
| 76 |
+
" \"repo_id\": \"Alovestocode/router-gemma3-merged\",\n",
|
| 77 |
+
" \"output_repo\": \"Alovestocode/router-gemma3-merged-awq\", # Or keep same repo\n",
|
| 78 |
+
" \"model_type\": \"gemma\",\n",
|
| 79 |
+
" },\n",
|
| 80 |
+
" \"router-qwen3-32b-merged\": {\n",
|
| 81 |
+
" \"repo_id\": \"Alovestocode/router-qwen3-32b-merged\",\n",
|
| 82 |
+
" \"output_repo\": \"Alovestocode/router-qwen3-32b-merged-awq\", # Or keep same repo\n",
|
| 83 |
+
" \"model_type\": \"qwen\",\n",
|
| 84 |
+
" }\n",
|
| 85 |
+
"}\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"# AWQ quantization config\n",
|
| 88 |
+
"AWQ_CONFIG = {\n",
|
| 89 |
+
" \"w_bit\": 4, # 4-bit quantization\n",
|
| 90 |
+
" \"q_group_size\": 128, # Group size for quantization\n",
|
| 91 |
+
" \"zero_point\": True, # Use zero-point quantization\n",
|
| 92 |
+
" \"version\": \"GEMM\", # GEMM kernel (better for longer contexts)\n",
|
| 93 |
+
"}\n"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "markdown",
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"source": [
|
| 100 |
+
"## 4. Quantization Function\n"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": null,
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"outputs": [],
|
| 108 |
+
"source": [
|
| 109 |
+
"from awq import AutoAWQForCausalLM\n",
|
| 110 |
+
"from transformers import AutoTokenizer\n",
|
| 111 |
+
"from huggingface_hub import HfApi\n",
|
| 112 |
+
"import torch\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"def quantize_model_to_awq(\n",
|
| 115 |
+
" model_name: str,\n",
|
| 116 |
+
" repo_id: str,\n",
|
| 117 |
+
" output_repo: str,\n",
|
| 118 |
+
" model_type: str,\n",
|
| 119 |
+
" awq_config: dict,\n",
|
| 120 |
+
" calibration_dataset_size: int = 128\n",
|
| 121 |
+
"):\n",
|
| 122 |
+
" \"\"\"Quantize a model to AWQ format.\n",
|
| 123 |
+
" \n",
|
| 124 |
+
" Args:\n",
|
| 125 |
+
" model_name: Display name for the model\n",
|
| 126 |
+
" repo_id: Source Hugging Face repo ID\n",
|
| 127 |
+
" output_repo: Destination Hugging Face repo ID\n",
|
| 128 |
+
" model_type: Model type (gemma/qwen) for tokenizer selection\n",
|
| 129 |
+
" awq_config: AWQ quantization configuration\n",
|
| 130 |
+
" calibration_dataset_size: Number of calibration samples\n",
|
| 131 |
+
" \"\"\"\n",
|
| 132 |
+
" print(f\"\\n{'='*60}\")\n",
|
| 133 |
+
" print(f\"Quantizing {model_name}\")\n",
|
| 134 |
+
" print(f\"Source: {repo_id}\")\n",
|
| 135 |
+
" print(f\"Destination: {output_repo}\")\n",
|
| 136 |
+
" print(f\"{'='*60}\\n\")\n",
|
| 137 |
+
" \n",
|
| 138 |
+
" # Step 1: Load tokenizer\n",
|
| 139 |
+
" print(f\"[1/5] Loading tokenizer from {repo_id}...\")\n",
|
| 140 |
+
" tokenizer = AutoTokenizer.from_pretrained(\n",
|
| 141 |
+
" repo_id,\n",
|
| 142 |
+
" trust_remote_code=True,\n",
|
| 143 |
+
" token=os.environ.get(\"HF_TOKEN\")\n",
|
| 144 |
+
" )\n",
|
| 145 |
+
" print(f\"✅ Tokenizer loaded\")\n",
|
| 146 |
+
" \n",
|
| 147 |
+
" # Step 2: Load model\n",
|
| 148 |
+
" print(f\"\\n[2/5] Loading model from {repo_id}...\")\n",
|
| 149 |
+
" print(\"⚠️ This may take several minutes and requires significant GPU memory...\")\n",
|
| 150 |
+
" \n",
|
| 151 |
+
" model = AutoAWQForCausalLM.from_pretrained(\n",
|
| 152 |
+
" repo_id,\n",
|
| 153 |
+
" device_map=\"auto\",\n",
|
| 154 |
+
" trust_remote_code=True,\n",
|
| 155 |
+
" token=os.environ.get(\"HF_TOKEN\")\n",
|
| 156 |
+
" )\n",
|
| 157 |
+
" print(f\"✅ Model loaded\")\n",
|
| 158 |
+
" \n",
|
| 159 |
+
" # Step 3: Prepare calibration dataset\n",
|
| 160 |
+
" print(f\"\\n[3/5] Preparing calibration dataset ({calibration_dataset_size} samples)...\")\n",
|
| 161 |
+
" \n",
|
| 162 |
+
" # Create a simple calibration dataset\n",
|
| 163 |
+
" # You can customize this based on your use case\n",
|
| 164 |
+
" calibration_texts = [\n",
|
| 165 |
+
" \"You are the Router Agent coordinating Math, Code, and General-Search specialists.\",\n",
|
| 166 |
+
" \"Emit EXACTLY ONE strict JSON object with keys route_plan, route_rationale, expected_artifacts,\",\n",
|
| 167 |
+
" \"Solve a quadratic equation using Python programming.\",\n",
|
| 168 |
+
" \"Implement a binary search algorithm with proper error handling.\",\n",
|
| 169 |
+
" \"Explain the concept of gradient descent in machine learning.\",\n",
|
| 170 |
+
" \"Write a function to calculate the Fibonacci sequence recursively.\",\n",
|
| 171 |
+
" \"Design a REST API endpoint for user authentication.\",\n",
|
| 172 |
+
" \"Analyze the time complexity of merge sort algorithm.\",\n",
|
| 173 |
+
" ]\n",
|
| 174 |
+
" \n",
|
| 175 |
+
" # Repeat to reach desired size\n",
|
| 176 |
+
" while len(calibration_texts) < calibration_dataset_size:\n",
|
| 177 |
+
" calibration_texts.extend(calibration_texts[:calibration_dataset_size - len(calibration_texts)])\n",
|
| 178 |
+
" \n",
|
| 179 |
+
" calibration_texts = calibration_texts[:calibration_dataset_size]\n",
|
| 180 |
+
" \n",
|
| 181 |
+
" # Tokenize calibration data\n",
|
| 182 |
+
" def tokenize_function(texts):\n",
|
| 183 |
+
" return tokenizer(\n",
|
| 184 |
+
" texts,\n",
|
| 185 |
+
" return_tensors=\"pt\",\n",
|
| 186 |
+
" padding=True,\n",
|
| 187 |
+
" truncation=True,\n",
|
| 188 |
+
" max_length=512\n",
|
| 189 |
+
" )\n",
|
| 190 |
+
" \n",
|
| 191 |
+
" calibration_data = tokenize_function(calibration_texts)\n",
|
| 192 |
+
" print(f\"✅ Calibration dataset prepared: {len(calibration_texts)} samples\")\n",
|
| 193 |
+
" \n",
|
| 194 |
+
" # Step 4: Quantize model\n",
|
| 195 |
+
" print(f\"\\n[4/5] Quantizing model to AWQ (this may take 30-60 minutes)...\")\n",
|
| 196 |
+
" print(f\"Config: {awq_config}\")\n",
|
| 197 |
+
" \n",
|
| 198 |
+
" model.quantize(\n",
|
| 199 |
+
" tokenizer,\n",
|
| 200 |
+
" quant_config=awq_config,\n",
|
| 201 |
+
" calib_data=calibration_data\n",
|
| 202 |
+
" )\n",
|
| 203 |
+
" \n",
|
| 204 |
+
" print(f\"✅ Model quantized to AWQ\")\n",
|
| 205 |
+
" \n",
|
| 206 |
+
" # Step 5: Save quantized model\n",
|
| 207 |
+
" print(f\"\\n[5/5] Saving quantized model to {output_repo}...\")\n",
|
| 208 |
+
" \n",
|
| 209 |
+
" # Create repo if it doesn't exist\n",
|
| 210 |
+
" api = HfApi()\n",
|
| 211 |
+
" try:\n",
|
| 212 |
+
" api.create_repo(\n",
|
| 213 |
+
" repo_id=output_repo,\n",
|
| 214 |
+
" repo_type=\"model\",\n",
|
| 215 |
+
" exist_ok=True,\n",
|
| 216 |
+
" token=os.environ.get(\"HF_TOKEN\")\n",
|
| 217 |
+
" )\n",
|
| 218 |
+
" except Exception as e:\n",
|
| 219 |
+
" print(f\"Note: Repo may already exist: {e}\")\n",
|
| 220 |
+
" \n",
|
| 221 |
+
" # Save model\n",
|
| 222 |
+
" model.save_quantized(\n",
|
| 223 |
+
" output_repo,\n",
|
| 224 |
+
" safetensors=True,\n",
|
| 225 |
+
" shard_size=\"10GB\" # Shard large models\n",
|
| 226 |
+
" )\n",
|
| 227 |
+
" \n",
|
| 228 |
+
" # Upload tokenizer\n",
|
| 229 |
+
" tokenizer.save_pretrained(output_repo)\n",
|
| 230 |
+
" \n",
|
| 231 |
+
" print(f\"✅ Quantized model saved to {output_repo}\")\n",
|
| 232 |
+
" \n",
|
| 233 |
+
" # Clean up memory\n",
|
| 234 |
+
" del model\n",
|
| 235 |
+
" del tokenizer\n",
|
| 236 |
+
" torch.cuda.empty_cache()\n",
|
| 237 |
+
" \n",
|
| 238 |
+
" print(f\"\\n✅ {model_name} quantization complete!\")\n",
|
| 239 |
+
" print(f\"Model available at: https://huggingface.co/{output_repo}\")\n"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "markdown",
|
| 244 |
+
"metadata": {},
|
| 245 |
+
"source": []
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"execution_count": null,
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": [
|
| 253 |
+
"quantize_model_to_awq(\n",
|
| 254 |
+
" model_name=\"Router-Gemma3-27B\",\n",
|
| 255 |
+
" repo_id=MODELS_TO_QUANTIZE[\"router-gemma3-merged\"][\"repo_id\"],\n",
|
| 256 |
+
" output_repo=MODELS_TO_QUANTIZE[\"router-gemma3-merged\"][\"output_repo\"],\n",
|
| 257 |
+
" model_type=MODELS_TO_QUANTIZE[\"router-gemma3-merged\"][\"model_type\"],\n",
|
| 258 |
+
" awq_config=AWQ_CONFIG,\n",
|
| 259 |
+
" calibration_dataset_size=128\n",
|
| 260 |
+
")\n"
|
| 261 |
+
]
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"cell_type": "markdown",
|
| 265 |
+
"metadata": {},
|
| 266 |
+
"source": [
|
| 267 |
+
"## 6. Quantize Router-Qwen3-32B-Merged\n"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"quantize_model_to_awq(\n",
|
| 277 |
+
" model_name=\"Router-Qwen3-32B\",\n",
|
| 278 |
+
" repo_id=MODELS_TO_QUANTIZE[\"router-qwen3-32b-merged\"][\"repo_id\"],\n",
|
| 279 |
+
" output_repo=MODELS_TO_QUANTIZE[\"router-qwen3-32b-merged\"][\"output_repo\"],\n",
|
| 280 |
+
" model_type=MODELS_TO_QUANTIZE[\"router-qwen3-32b-merged\"][\"model_type\"],\n",
|
| 281 |
+
" awq_config=AWQ_CONFIG,\n",
|
| 282 |
+
" calibration_dataset_size=128\n",
|
| 283 |
+
")\n"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "markdown",
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"source": [
|
| 290 |
+
"## 7. Verify Quantized Models\n"
|
| 291 |
+
]
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"cell_type": "code",
|
| 295 |
+
"execution_count": null,
|
| 296 |
+
"metadata": {},
|
| 297 |
+
"outputs": [],
|
| 298 |
+
"source": [
|
| 299 |
+
"from transformers import AutoTokenizer\n",
|
| 300 |
+
"from awq import AutoAWQForCausalLM\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"def verify_awq_model(repo_id: str):\n",
|
| 303 |
+
" \"\"\"Verify that an AWQ model can be loaded correctly.\"\"\"\n",
|
| 304 |
+
" print(f\"\\nVerifying {repo_id}...\")\n",
|
| 305 |
+
" \n",
|
| 306 |
+
" try:\n",
|
| 307 |
+
" # Load tokenizer\n",
|
| 308 |
+
" tokenizer = AutoTokenizer.from_pretrained(\n",
|
| 309 |
+
" repo_id,\n",
|
| 310 |
+
" trust_remote_code=True,\n",
|
| 311 |
+
" token=os.environ.get(\"HF_TOKEN\")\n",
|
| 312 |
+
" )\n",
|
| 313 |
+
" \n",
|
| 314 |
+
" # Load AWQ model\n",
|
| 315 |
+
" model = AutoAWQForCausalLM.from_quantized(\n",
|
| 316 |
+
" repo_id,\n",
|
| 317 |
+
" fuse_layers=True,\n",
|
| 318 |
+
" trust_remote_code=True,\n",
|
| 319 |
+
" device_map=\"auto\",\n",
|
| 320 |
+
" token=os.environ.get(\"HF_TOKEN\")\n",
|
| 321 |
+
" )\n",
|
| 322 |
+
" \n",
|
| 323 |
+
" # Test generation\n",
|
| 324 |
+
" test_prompt = \"You are the Router Agent. Test prompt.\"\n",
|
| 325 |
+
" inputs = tokenizer(test_prompt, return_tensors=\"pt\").to(model.device)\n",
|
| 326 |
+
" \n",
|
| 327 |
+
" with torch.inference_mode():\n",
|
| 328 |
+
" outputs = model.generate(\n",
|
| 329 |
+
" **inputs,\n",
|
| 330 |
+
" max_new_tokens=10,\n",
|
| 331 |
+
" do_sample=False\n",
|
| 332 |
+
" )\n",
|
| 333 |
+
" \n",
|
| 334 |
+
" generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
| 335 |
+
" print(f\"✅ Model loads and generates correctly\")\n",
|
| 336 |
+
" print(f\"Generated: {generated_text[:100]}...\")\n",
|
| 337 |
+
" \n",
|
| 338 |
+
" # Check model size\n",
|
| 339 |
+
" total_params = sum(p.numel() for p in model.parameters())\n",
|
| 340 |
+
" print(f\"Total parameters: {total_params / 1e9:.2f}B\")\n",
|
| 341 |
+
" \n",
|
| 342 |
+
" del model\n",
|
| 343 |
+
" del tokenizer\n",
|
| 344 |
+
" torch.cuda.empty_cache()\n",
|
| 345 |
+
" \n",
|
| 346 |
+
" return True\n",
|
| 347 |
+
" except Exception as e:\n",
|
| 348 |
+
" print(f\"❌ Verification failed: {e}\")\n",
|
| 349 |
+
" import traceback\n",
|
| 350 |
+
" traceback.print_exc()\n",
|
| 351 |
+
" return False\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"# Verify both models\n",
|
| 354 |
+
"for model_key, model_info in MODELS_TO_QUANTIZE.items():\n",
|
| 355 |
+
" verify_awq_model(model_info[\"output_repo\"])\n"
|
| 356 |
+
]
|
| 357 |
+
}
|
| 358 |
+
],
|
| 359 |
+
"metadata": {
|
| 360 |
+
"language_info": {
|
| 361 |
+
"name": "python"
|
| 362 |
+
}
|
| 363 |
+
},
|
| 364 |
+
"nbformat": 4,
|
| 365 |
+
"nbformat_minor": 2
|
| 366 |
+
}
|