Spaces:
Runtime error
Runtime error
| import torch | |
| import open_clip | |
| from torchvision import transforms | |
| from torchvision.transforms import ToPILImage | |
| class help_function: | |
| def __init__(self): | |
| self.clip_text_model = torch.jit.load('jit_models/clip_text_jit.pt', map_location=torch.device('cpu')) | |
| self.decoder = torch.jit.load('jit_models/decoder_16w.pt', map_location=torch.device('cpu')) | |
| self.mapper_clip = torch.jit.load('jit_models/mapper_clip_jit.pt', map_location=torch.device('cpu')) | |
| self.mean_clip = torch.load('jit_models/mean_clip.pt') | |
| self.mean_person = torch.load('jit_models/mean_person.pt') | |
| self.encoder = torch.jit.load('jit_models/combined_encoder.pt', map_location=torch.device('cpu')) | |
| self.tokenizer = open_clip.get_tokenizer('ViT-B-32') | |
| self.transform = transforms.Compose([ | |
| transforms.Resize(224), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| ]) | |
| def get_text_embedding(self, text): | |
| text = self.clip_text_model(self.tokenizer(text)) | |
| return text | |
| def get_image_inversion(self, image): | |
| image = self.transform(image) | |
| w_inversion = self.encoder(image.reshape(1,3,224,224)).reshape(1,16,512) | |
| return w_inversion + self.mean_person | |
| def get_text_delta(self,text_feachers): | |
| w_delta = self.mapper_clip(text_feachers - self.mean_clip) | |
| return w_delta | |
| def image_from_text(self,text,image,power = 1.0): | |
| w_inversion = self.get_image_inversion(image) | |
| text_embedding = self.get_text_embedding(text) | |
| w_delta = self.get_text_delta(text_embedding) | |
| w_edit = w_inversion + w_delta * power | |
| image_edit = self.decoder(w_edit) | |
| return ToPILImage()((image_edit[0]+0.5)*0.5) | |