File size: 18,968 Bytes
c0a2269 9052a39 4c890b2 9052a39 c0a2269 9784deb c0a2269 9b518d4 c0a2269 9b518d4 c0a2269 9b518d4 c0a2269 9052a39 c0a2269 9052a39 c0a2269 f067128 c0a2269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import torch
from typing import Annotated, TypedDict, Literal
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_core.tools import tool
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_core.messages import SystemMessage, trim_messages, AIMessage, HumanMessage, ToolCall
from langchain_huggingface.llms import HuggingFacePipeline
from langchain_huggingface import ChatHuggingFace
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.runnables import chain
from uuid import uuid4
import re
import matplotlib.pyplot as plt
import PIL.Image as Image
import gradio as gr
import spaces
from rdkit import Chem
from rdkit.Chem import AllChem, QED
from rdkit.Chem import Draw
from rdkit import rdBase
from rdkit.Chem import rdMolAlign
import os
from rdkit import RDConfig
from rdkit.Chem.Features.ShowFeats import _featColors as featColors
from rdkit.Chem.FeatMaps import FeatMaps
from elevenlabs.client import ElevenLabs
from elevenlabs import stream
import base64
eleven_key = os.getenv("eleven_key")
elevenlabs = ElevenLabs(api_key=eleven_key)
fdef = AllChem.BuildFeatureFactory(os.path.join(RDConfig.RDDataDir,'BaseFeatures.fdef'))
fmParams = {}
for k in fdef.GetFeatureFamilies():
fparams = FeatMaps.FeatMapParams()
fmParams[k] = fparams
device = "cuda" if torch.cuda.is_available() else "cpu"
hf = HuggingFacePipeline.from_model_id(
#model_id= "swiss-ai/Apertus-8B-Instruct-2509",
model_id= "microsoft/Phi-4-mini-instruct",
task="text-generation",
pipeline_kwargs = {"max_new_tokens": 700, "temperature": 0.1})
chat_model = ChatHuggingFace(llm=hf)
class State(TypedDict):
'''
The state of the agent.
'''
messages: Annotated[list, add_messages]
query_smiles: str
query_task: str
query_path: str
query_reference: str
tool_choice: tuple
which_tool: int
props_string: str
#(Literal["lipinski_tool", "substitution_tool", "pharm_feature_tool"],
# Literal["lipinski_tool", "substitution_tool", "pharm_feature_tool"])
def substitution_node(state: State) -> State:
'''
A simple substitution routine that looks for a substituent on a phenyl ring and
substitutes different fragments in that location. Returns a list of novel molecules and their
QED score (1 is most drug-like, 0 is least drug-like).
Args:
smiles: the input smiles string
Returns:
new_smiles_string: a string of novel molecules and their QED scores.
'''
print("substitution tool")
print('===================================================')
smiles = state["query_smiles"]
current_props_string = state["props_string"]
new_fragments = ["c(Cl)c", "c(F)c", "c(O)c", "c(C)c", "c(OC)c", "c([NH3+])c",
"c(Br)c", "c(C(F)(F)(F))c"]
new_smiles = []
for fragment in new_fragments:
m = re.findall(r"c(\D\D*)c", smiles)
if len(m) != 0:
for group in m:
#print(group)
if fragment not in group:
new_smile = smiles.replace(group[1:], fragment)
new_smiles.append(new_smile)
qeds = []
for new_smile in new_smiles:
qeds.append(get_qed(new_smile))
original_qed = get_qed(smiles)
new_smiles_string = "Substitution or Analogue creation tool results: \n"
new_smiles_string += f"The original molecule SMILES was {smiles} with QED {original_qed}.\n"
new_smiles_string += "Novel Molecules or Analogues and QED values: \n"
for i in range(len(new_smiles)):
new_smiles_string += f"SMILES: {new_smiles[i]}, QED: {qeds[i]:.3f}\n"
new_mols = [Chem.MolFromSmiles(x) for x in new_smiles]
if len(new_smiles) > 0:
img = Draw.MolsToGridImage(new_mols, molsPerRow=3, subImgSize=(200,200), legends=[f"QED: {qeds[i]:.3f}" for i in range(len(new_smiles))])
img.save('Substitution_image.png')
else:
new_smiles_string += "No valid substitutions were found.\n"
print(new_smiles_string)
current_props_string += new_smiles_string
state["props_string"] = current_props_string
state["which_tool"] += 1
return state
def get_qed(smiles):
'''
Helper function to compute QED for a given molecule.
Args:
smiles: the input smiles string
Returns:
qed: the QED score of the molecule.
'''
mol = Chem.MolFromSmiles(smiles)
qed = Chem.QED.default(mol)
return qed
def lipinski_node(state: State) -> State:
'''
A tool to calculate QED and other lipinski properties of a molecule.
Args:
smiles: the input smiles string
Returns:
props_string: a string of the QED and other lipinski properties of the molecule,
including Molecular Weight, LogP, HBA, HBD, Polar Surface Area,
Rotatable Bonds, Aromatic Rings and Undesireable Moieties.
'''
print("lipinski tool")
print('===================================================')
smiles = state["query_smiles"]
current_props_string = state["props_string"]
mol = Chem.MolFromSmiles(smiles)
qed = Chem.QED.default(mol)
p = Chem.QED.properties(mol)
mw = p[0]
logP = p[1]
hba = p[2]
hbd = p[3]
psa = p[4]
rb = p[5]
ar = p[6]
um = p[7]
props_string = "Lipinski tool results: \n"
props_string += f'''QED and other lipinski properties of the molecule:
SMILES: {smiles},
QED: {qed:.3f},
Molecular Weight: {mw:.3f},
LogP: {logP:.3f},
Hydrogen bond acceptors: {hba},
Hydrogen bond donors: {hbd},
Polar Surface Area: {psa:.3f},
Rotatable Bonds: {rb},
Aromatic Rings: {ar},
Undesireable moieties: {um}
'''
current_props_string += props_string
state["props_string"] = current_props_string
state["which_tool"] += 1
return state
def pharmfeature_node(state: State) -> State:
'''
A tool to compare the pharmacophore features of a query molecule against
a those of a reference molecule and report the pharmacophore features of both and the feature
score of the query molecule.
Args:
known_smiles: the reference smiles string
test_smiles: the query smiles string
Returns:
props_string: a string of the pharmacophore features of both molecules and the feature
score of the query molecule.
'''
print("pharmfeature tool")
print('===================================================')
test_smiles = state["query_smiles"]
known_smiles = state["query_reference"]
current_props_string = state["props_string"]
smiles = [known_smiles, test_smiles]
mols = [Chem.MolFromSmiles(x) for x in smiles]
mols = [Chem.AddHs(m) for m in mols]
ps = AllChem.ETKDGv3()
for m in mols:
AllChem.EmbedMolecule(m,ps)
o3d = rdMolAlign.GetO3A(mols[1],mols[0])
o3d.Align()
keep = ('Donor', 'Acceptor', 'NegIonizable', 'PosIonizable', 'ZnBinder', 'Aromatic', 'LumpedHydrophobe')
feat_hash = {'Donor': 'Hydrogen bond donors', 'Acceptor': 'Hydrogen bond acceptors',
'NegIonizable': 'Negatively ionizable groups', 'PosIonizable': 'Positively ionizable groups',
'ZnBinder': 'Zinc Binders', 'Aromatic': 'Aromatic rings', 'LumpedHydrophobe': 'Hydrophobic/non-polar groups' }
feat_vectors = []
for m in mols:
rawFeats = fdef.GetFeaturesForMol(m)
feat_vectors.append([f for f in rawFeats if f.GetFamily() in keep])
feat_maps = [FeatMaps.FeatMap(feats = x,weights=[1]*len(x),params=fmParams) for x in feat_vectors]
test_score = feat_maps[0].ScoreFeats(feat_maps[1].GetFeatures())/(feat_maps[0].GetNumFeatures())
feats_known = {}
feats_test = {}
for feat in feat_vectors[0]:
if feat.GetFamily() not in feats_known.keys():
feats_known[feat.GetFamily()] = 1
else:
feats_known[feat.GetFamily()] += 1
for feat in feat_vectors[1]:
if feat.GetFamily() not in feats_test.keys():
feats_test[feat.GetFamily()] = 1
else:
feats_test[feat.GetFamily()] += 1
props_string = "PharmFeature tool results: \n"
props_string += f"The Pharmacophore Feature Overlap Score of the test molecule \
versus the reference molecule is {test_score:.3f}. \n\n"
for feat in feats_known.keys():
props_string += f"There are {feats_known[feat]} {feat_hash[feat]} in the reference molecule. \n"
for feat in feats_test.keys():
props_string += f"There are {feats_test[feat]} {feat_hash[feat]} in the test molecule. \n"
current_props_string += props_string
state["props_string"] = current_props_string
state["which_tool"] += 1
return state
def first_node(state: State) -> State:
'''
The first node of the agent. This node receives the input and asks the LLM
to determine which is the best tool to use to answer the QUERY TASK.
Input: the initial prompt from the user. should contain only one of more of the following:
smiles: the smiles string, task: the query task, path: the path to the file,
reference: the reference smiles
the value should be separated from the name by a ':' and each field should
be separated from the previous one by a ','.
All of these values are saved to the state
Output: the tool choice
'''
query_smiles = None
state["query_smiles"] = query_smiles
query_task = None
state["query_task"] = query_task
query_path = None
state["query_path"] = query_path
query_reference = None
state["query_reference"] = query_reference
props_string = ""
state["props_string"] = props_string
raw_input = state["messages"][-1].content
parts = raw_input.split(',')
for part in parts:
if 'smiles' in part:
query_smiles = part.split(':')[1]
if query_smiles.lower() == 'none':
query_smiles = None
state["query_smiles"] = query_smiles
if 'task' in part:
query_task = part.split(':')[1]
state["query_task"] = query_task
if 'path' in part:
query_path = part.split(':')[1]
if query_path.lower() == 'none':
query_path = None
state["query_path"] = query_path
if 'reference' in part:
query_reference = part.split(':')[1]
if query_reference.lower() == 'none':
query_reference = None
state["query_reference"] = query_reference
prompt = f'You are given a QUERY_TASK given below and a set of available tools. \
Your job is to determine which tool(S) if any can accomplish the QUERY_TASK.\n\n \
Choose only from the tool names listed below.\n \
If exactly one tool can preform the task, reply with the tool name followed by "#".\n \
If two toold are required together, reply with both tool names separated by a comma, \
in a single line followed by a "#".\n \
If none of the tools can perform the task, reply with "None #".\n \
Reply with ONLY the tool names followed by "#". Tools:\n \
lipinski_tool: Calculates the following moelcular properties: Quantitative \
Estimate of Drug-likeness (QED), Molecular weight, LogP (measures lipophilicity, higher is more lipophilic), \
HBA, HBD, Polar Surface Area, number of rotatable bonds, number of aromatic rings and Undesireable Moieties. \n \
substitution_tool: Generates structural analogues of the molecule by substituting \
different chemical groups on the original molecule. Outputs novel molecules and their \
QED score (1 is most drug-like, 0 is least drug-like). \n \
pharm_feature_tool: this tool compares the pharmacophore features of a query molecule against \
a reference molecule. Rreporting the shared pharmacophore features and similarity feature score. \
Does not report features unique to either moelcule.'
res = chat_model.invoke(prompt)
tool_choices = str(res).split('<|assistant|>')[1].split('#')[0].strip()
tool_choices = tool_choices.split(',')
if len(tool_choices) == 1:
if tool_choices[0].strip().lower() == 'none':
tool_choice = (None, None)
else:
tool_choice = (tool_choices[0].strip().lower(), None)
elif len(tool_choices) == 2:
if tool_choices[0].strip().lower() == 'none':
tool_choice = (None, tool_choices[1].strip().lower())
elif tool_choices[1].strip().lower() == 'none':
tool_choice = (tool_choices[0].strip().lower(), None)
else:
tool_choice = (tool_choices[0].strip().lower(), tool_choices[1].strip().lower())
else:
tool_choice = (None, None)
state["tool_choice"] = tool_choice
state["which_tool"] = 0
print(f"The chosen tools are: {tool_choice}")
return state
def loop_node(state: State) -> State:
'''
This node accepts the tool returns and decides if it needs to call another
tool or go on to the parser node.
Input: the tool returns.
Output: the next node to call.
'''
return state
def parser_node(state: State) -> State:
'''
This is the third node in the agent. It receives the output from the tool,
puts it into a prompt as CONTEXT, and asks the LLM to answer the original
query.
Input: the output from the tool.
Output: the answer to the original query.
'''
props_string = state["props_string"]
query_task = state["query_task"]
prompt = f'Using only the information provided in the CONTEXT below, \
answer the QUERY_TASK.\n \
Your answer must:\n Directly address the QUERY_TASK.\n \
Use only facts found in the CONTEXT (do not invent information).\n \
Be concise, precise and logically consistent.\n End your answer with a "#" \
QUERY_TASK: {query_task}.\n \
CONTEXT: {props_string}.\n '
res = chat_model.invoke(prompt)
return {"messages": res}
def reflect_node(state: State) -> State:
'''
This is the fourth node of the agent. It recieves the LLMs previous answer and
tries to improve it.
Input: the LLMs last answer.
Output: the improved answer.
'''
previous_answer = state["messages"][-1].content
props_string = state["props_string"]
prompt = f'You will revise the PREVIOUS ANSWER below using the tools results \
which you provided below \
INSTRUCTIONS:\n \
Retain all correct information from the PREVIOUS ANSWER. \
Incorporate only relevent information from the TOOL RESULTS. \
Add clarifying or enriching details. \
Do NOT invent or assume any information that is not present in the input. \
Improve clarity, precision, factual accuracy, and organisation. \
Provide a well-structured improved asnwer. \
End \
your new answer with a "#" \
PREVIOUS ANSWER: {previous_answer}.\n \
TOOL RESULTS: {props_string}. '
res = chat_model.invoke(prompt)
return {"messages": res}
def get_chemtool(state):
'''
'''
which_tool = state["which_tool"]
tool_choice = state["tool_choice"]
if tool_choice is None or tool_choice == (None, None):
return None
if which_tool == 0 or which_tool == 1:
current_tool = tool_choice[which_tool]
if current_tool is None:
return None
elif which_tool > 1:
current_tool = None
return current_tool
def pretty_print(answer):
final = str(answer['messages'][-1]).split('<|assistant|>')[-1].split('#')[0].strip("n").strip('\\').strip('n').strip('\\')
for i in range(0,len(final),100):
print(final[i:i+100])
def print_short(answer):
for i in range(0,len(answer),100):
print(answer[i:i+100])
builder = StateGraph(State)
builder.add_node("first_node", first_node)
builder.add_node("substitution_node", substitution_node)
builder.add_node("lipinski_node", lipinski_node)
builder.add_node("pharmfeature_node", pharmfeature_node)
builder.add_node("loop_node", loop_node)
builder.add_node("parser_node", parser_node)
builder.add_node("reflect_node", reflect_node)
builder.add_edge(START, "first_node")
builder.add_conditional_edges("first_node", get_chemtool, {
"substitution_tool": "substitution_node",
"lipinski_tool": "lipinski_node",
"pharm_feature_tool": "pharmfeature_node",
None: "parser_node"})
builder.add_edge("lipinski_node", "loop_node")
builder.add_edge("substitution_node", "loop_node")
builder.add_edge("pharmfeature_node", "loop_node")
builder.add_conditional_edges("loop_node", get_chemtool, {
"substitution_tool": "substitution_node",
"lipinski_tool": "lipinski_node",
"pharm_feature_tool": "pharmfeature_node",
None: "parser_node"})
builder.add_edge("parser_node", "reflect_node")
builder.add_edge("reflect_node", END)
graph = builder.compile()
@spaces.GPU
def PropAgent(task, smiles, reference):
#if Substitution_image.png exists, remove it
if os.path.exists('Substitution_image.png'):
os.remove('Substitution_image.png')
input = {
"messages": [
HumanMessage(f'query_smiles: {smiles}, query_task: {task}, query_reference: {reference}')
]
}
#print(input)
replies = []
for c in graph.stream(input): #, stream_mode='updates'):
m = re.findall(r'[a-z]+\_node', str(c))
if len(m) != 0:
reply = c[str(m[0])]['messages']
if 'assistant' in str(reply):
reply = str(reply).split("<|assistant|>")[-1].split('#')[0].strip()
replies.append(reply)
#check if image exists
if os.path.exists('Substitution_image.png'):
img_loc = 'Substitution_image.png'
img = Image.open(img_loc)
#else create a dummy blank image
else:
img = Image.new('RGB', (250, 250), color = (255, 255, 255))
elita_text = replies[-1]
voice_settings = {
"stability": 0.37,
"similarity_boost": 0.90,
"style": 0.0,
"speed": 1.05
}
audio_stream = elevenlabs.text_to_speech.convert(
text = elita_text,
voice_id = 'G5KS88IIzHIX1ogRxdrA',
model_id = 'eleven_multilingual_v2',
output_format='mp3_44100_128',
voice_settings=voice_settings
)
audio_converted = b"".join(audio_stream)
audio = base64.b64encode(audio_converted).decode("utf-8")
audio_player = f'<audio src="data:audio/mpeg;base64,{audio}" controls autoplay></audio>'
return replies[-1], img, audio_player
with gr.Blocks(fill_height=True) as forest:
gr.Markdown('''
# Properties Agent
- uses RDKit to calculate lipinski properties
- finds pharmacophore similarity between two molecules
- generated analogues of a molecule
''')
name, smiles = None, None
with gr.Row():
with gr.Column():
smiles = gr.Textbox(label="Molecule SMILES of interest (optional): ", placeholder='none')
ref = gr.Textbox(label="Reference molecule SMILES of interest (optional): ", placeholder='none')
task = gr.Textbox(label="Task for Agent: ")
calc_btn = gr.Button(value = "Submit to Agent")
with gr.Column():
props = gr.Textbox(label="Agent results: ", lines=20 )
pic = gr.Image(label="Molecule")
voice = gr.HTML()
calc_btn.click(PropAgent, inputs = [task, smiles, ref], outputs = [props, pic, voice])
task.submit(PropAgent, inputs = [task, smiles, ref], outputs = [props, pic, voice])
forest.launch(debug=False, mcp_server=True) |