import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MaxAbsScaler from sklearn.neighbors import KNeighborsClassifier import streamlit as st df=pd.read_excel("resistant_data_urine.xlsx") X=df.iloc[:,:-1].values y=df.iloc[:,-1].values X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=10) sc=MaxAbsScaler() X_train_new=sc.fit_transform(X_train) X_test_new=sc.transform(X_test) model=KNeighborsClassifier(n_neighbors=4,p=1) model=model.fit(X_train_new,y_train) print("Training accuracy: ",model.score(X_train_new,y_train)) print("Testing accuracy : ",model.score(X_test_new,y_test)) st.title('Resistant') st.title(':blue[Urine test]:') Age = st.number_input("Age",min_value=1, max_value=100) options = ["Male", "Female"] selectbox_selection = st.selectbox("Select Gender", options) #st.write(f"Gender selected is {selectbox_selection}") Fever = st.number_input("Fever",min_value=98, max_value=104) options1 = ["Yes", "No"] selectbox_selection = st.selectbox("Bone_merrow_transplantation", options1) HB = st.number_input("HB",min_value=1, max_value=20) platet = st.number_input("platet") CRP= st.number_input("CRP") Procalictonin =st.number_input("Procalictonin") E_colli= st.number_input("CTX-M") Result1 =0 Klebsilla = st.number_input("KPC") Result2 = 0 Pseudomonas= st.number_input("NDM") Result3 = 0 submit=st.button("Result") gender = 1 Bone_merrow_transplantation=1 if float(E_colli)<= -10: Result1 = 1 if float(Klebsilla)<= -10: Result2 = 1 if float(Pseudomonas)<= -10: Result3 = 1 if selectbox_selection == "FEMALE": gender = 0 if selectbox_selection == "NO": Bone_merrow_transplantation=0 sapmle=[Age, gender, Fever, Bone_merrow_transplantation, HB, platet, CRP, Procalictonin, E_colli, Result1, Klebsilla, Result2, Pseudomonas, Result3] s=model.predict([sapmle]) st.write(s) print(s)