Az-r-ow
commited on
Commit
·
48a770b
1
Parent(s):
c644122
fix(camembert): camembert fine-tuning
Browse files- assets/bilstm_vs_blstm_pos.png +3 -0
- assets/lstm.png +3 -0
- assets/lstm_vs_lstm_with_pos.png +3 -0
- camemBERT_finetuning.ipynb +155 -126
- deepl_ner.ipynb +0 -0
- requirements.txt +3 -1
assets/bilstm_vs_blstm_pos.png
ADDED
|
Git LFS Details
|
assets/lstm.png
ADDED
|
Git LFS Details
|
assets/lstm_vs_lstm_with_pos.png
ADDED
|
Git LFS Details
|
camemBERT_finetuning.ipynb
CHANGED
|
@@ -11,30 +11,39 @@
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
-
"execution_count":
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
{
|
| 18 |
"name": "stdout",
|
| 19 |
"output_type": "stream",
|
| 20 |
"text": [
|
| 21 |
-
"Requirement already satisfied: transformers in ./venv/lib/python3.12/site-packages (4.
|
| 22 |
"Requirement already satisfied: tf-keras in ./venv/lib/python3.12/site-packages (2.18.0)\n",
|
| 23 |
-
"
|
| 24 |
-
" Downloading focal_loss-0.0.7-py3-none-any.whl.metadata (5.1 kB)\n",
|
| 25 |
"Requirement already satisfied: filelock in ./venv/lib/python3.12/site-packages (from transformers) (3.16.1)\n",
|
| 26 |
-
"Requirement already satisfied: huggingface-hub<1.0,>=0.
|
| 27 |
"Requirement already satisfied: numpy>=1.17 in ./venv/lib/python3.12/site-packages (from transformers) (1.26.4)\n",
|
| 28 |
-
"Requirement already satisfied: packaging>=20.0 in ./venv/lib/python3.12/site-packages (from transformers) (24.
|
| 29 |
"Requirement already satisfied: pyyaml>=5.1 in ./venv/lib/python3.12/site-packages (from transformers) (6.0.2)\n",
|
| 30 |
-
"Requirement already satisfied: regex!=2019.12.17 in ./venv/lib/python3.12/site-packages (from transformers) (2024.
|
| 31 |
"Requirement already satisfied: requests in ./venv/lib/python3.12/site-packages (from transformers) (2.32.3)\n",
|
| 32 |
-
"Requirement already satisfied: tokenizers<0.
|
| 33 |
"Requirement already satisfied: safetensors>=0.4.1 in ./venv/lib/python3.12/site-packages (from transformers) (0.4.5)\n",
|
| 34 |
"Requirement already satisfied: tqdm>=4.27 in ./venv/lib/python3.12/site-packages (from transformers) (4.66.5)\n",
|
| 35 |
"Requirement already satisfied: tensorflow<2.19,>=2.18 in ./venv/lib/python3.12/site-packages (from tf-keras) (2.18.0)\n",
|
| 36 |
-
"Requirement already satisfied: fsspec>=2023.5.0 in ./venv/lib/python3.12/site-packages (from huggingface-hub<1.0,>=0.
|
| 37 |
-
"Requirement already satisfied: typing-extensions>=3.7.4.3 in ./venv/lib/python3.12/site-packages (from huggingface-hub<1.0,>=0.
|
| 38 |
"Requirement already satisfied: absl-py>=1.0.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (2.1.0)\n",
|
| 39 |
"Requirement already satisfied: astunparse>=1.6.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.6.3)\n",
|
| 40 |
"Requirement already satisfied: flatbuffers>=24.3.25 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (24.3.25)\n",
|
|
@@ -43,11 +52,11 @@
|
|
| 43 |
"Requirement already satisfied: libclang>=13.0.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (18.1.1)\n",
|
| 44 |
"Requirement already satisfied: opt-einsum>=2.3.2 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (3.4.0)\n",
|
| 45 |
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (4.25.5)\n",
|
| 46 |
-
"Requirement already satisfied: setuptools in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (75.
|
| 47 |
-
"Requirement already satisfied: six>=1.12.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.
|
| 48 |
"Requirement already satisfied: termcolor>=1.1.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (2.5.0)\n",
|
| 49 |
-
"Requirement already satisfied: wrapt>=1.11.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.
|
| 50 |
-
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.
|
| 51 |
"Requirement already satisfied: tensorboard<2.19,>=2.18 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (2.18.0)\n",
|
| 52 |
"Requirement already satisfied: keras>=3.5.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (3.7.0)\n",
|
| 53 |
"Requirement already satisfied: h5py>=3.11.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (3.12.1)\n",
|
|
@@ -56,23 +65,17 @@
|
|
| 56 |
"Requirement already satisfied: idna<4,>=2.5 in ./venv/lib/python3.12/site-packages (from requests->transformers) (3.10)\n",
|
| 57 |
"Requirement already satisfied: urllib3<3,>=1.21.1 in ./venv/lib/python3.12/site-packages (from requests->transformers) (2.2.3)\n",
|
| 58 |
"Requirement already satisfied: certifi>=2017.4.17 in ./venv/lib/python3.12/site-packages (from requests->transformers) (2024.8.30)\n",
|
| 59 |
-
"Requirement already satisfied: wheel<1.0,>=0.23.0 in ./venv/lib/python3.12/site-packages (from astunparse>=1.6.0->tensorflow<2.19,>=2.18->tf-keras) (0.
|
| 60 |
-
"Requirement already satisfied: rich in ./venv/lib/python3.12/site-packages (from keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (13.9.
|
| 61 |
"Requirement already satisfied: namex in ./venv/lib/python3.12/site-packages (from keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (0.0.8)\n",
|
| 62 |
-
"Requirement already satisfied: optree in ./venv/lib/python3.12/site-packages (from keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (0.13.
|
| 63 |
"Requirement already satisfied: markdown>=2.6.8 in ./venv/lib/python3.12/site-packages (from tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (3.7)\n",
|
| 64 |
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in ./venv/lib/python3.12/site-packages (from tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (0.7.2)\n",
|
| 65 |
-
"Requirement already satisfied: werkzeug>=1.0.1 in ./venv/lib/python3.12/site-packages (from tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (3.
|
| 66 |
"Requirement already satisfied: MarkupSafe>=2.1.1 in ./venv/lib/python3.12/site-packages (from werkzeug>=1.0.1->tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (3.0.2)\n",
|
| 67 |
"Requirement already satisfied: markdown-it-py>=2.2.0 in ./venv/lib/python3.12/site-packages (from rich->keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (3.0.0)\n",
|
| 68 |
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in ./venv/lib/python3.12/site-packages (from rich->keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (2.18.0)\n",
|
| 69 |
-
"Requirement already satisfied: mdurl~=0.1 in ./venv/lib/python3.12/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (0.1.2)\n"
|
| 70 |
-
"Downloading focal_loss-0.0.7-py3-none-any.whl (19 kB)\n",
|
| 71 |
-
"Installing collected packages: focal-loss\n",
|
| 72 |
-
"Successfully installed focal-loss-0.0.7\n",
|
| 73 |
-
"\n",
|
| 74 |
-
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\n",
|
| 75 |
-
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
| 76 |
]
|
| 77 |
}
|
| 78 |
],
|
|
@@ -82,7 +85,7 @@
|
|
| 82 |
},
|
| 83 |
{
|
| 84 |
"cell_type": "code",
|
| 85 |
-
"execution_count":
|
| 86 |
"metadata": {},
|
| 87 |
"outputs": [],
|
| 88 |
"source": [
|
|
@@ -93,7 +96,7 @@
|
|
| 93 |
},
|
| 94 |
{
|
| 95 |
"cell_type": "code",
|
| 96 |
-
"execution_count":
|
| 97 |
"metadata": {},
|
| 98 |
"outputs": [],
|
| 99 |
"source": [
|
|
@@ -102,7 +105,7 @@
|
|
| 102 |
},
|
| 103 |
{
|
| 104 |
"cell_type": "code",
|
| 105 |
-
"execution_count":
|
| 106 |
"metadata": {},
|
| 107 |
"outputs": [],
|
| 108 |
"source": [
|
|
@@ -113,46 +116,41 @@
|
|
| 113 |
")\n",
|
| 114 |
"\n",
|
| 115 |
"# To avoid overfitting the model on sentences that don't have any labels\n",
|
| 116 |
-
"
|
| 117 |
-
"
|
| 118 |
-
"# )\n",
|
| 119 |
-
"\n",
|
| 120 |
-
"large_sentences, large_labels, _, __ = dp.from_bio_file_to_examples(\n",
|
| 121 |
-
" \"./data/bio/fr.bio/1k_train_large_samples.bio\"\n",
|
| 122 |
")\n",
|
| 123 |
"\n",
|
| 124 |
-
"
|
| 125 |
-
"
|
|
|
|
| 126 |
]
|
| 127 |
},
|
| 128 |
{
|
| 129 |
"cell_type": "code",
|
| 130 |
-
"execution_count":
|
| 131 |
"metadata": {},
|
| 132 |
"outputs": [],
|
| 133 |
"source": [
|
| 134 |
-
"
|
| 135 |
-
"
|
| 136 |
-
"processed_sentences, processed_labels = dp.process_sentences_and_labels(\n",
|
| 137 |
-
" sentences, labels, return_tokens=True, stemming=False\n",
|
| 138 |
-
")"
|
| 139 |
]
|
| 140 |
},
|
| 141 |
{
|
| 142 |
"cell_type": "code",
|
| 143 |
-
"execution_count":
|
| 144 |
"metadata": {},
|
| 145 |
"outputs": [],
|
| 146 |
"source": [
|
| 147 |
-
"
|
| 148 |
-
"
|
| 149 |
-
"
|
| 150 |
-
"
|
|
|
|
| 151 |
]
|
| 152 |
},
|
| 153 |
{
|
| 154 |
"cell_type": "code",
|
| 155 |
-
"execution_count":
|
| 156 |
"metadata": {},
|
| 157 |
"outputs": [],
|
| 158 |
"source": [
|
|
@@ -161,12 +159,12 @@
|
|
| 161 |
" as well as the embedding size\n",
|
| 162 |
"\"\"\"\n",
|
| 163 |
"\n",
|
| 164 |
-
"MAX_LEN =
|
| 165 |
]
|
| 166 |
},
|
| 167 |
{
|
| 168 |
"cell_type": "code",
|
| 169 |
-
"execution_count":
|
| 170 |
"metadata": {},
|
| 171 |
"outputs": [],
|
| 172 |
"source": [
|
|
@@ -177,25 +175,26 @@
|
|
| 177 |
},
|
| 178 |
{
|
| 179 |
"cell_type": "code",
|
| 180 |
-
"execution_count":
|
| 181 |
"metadata": {},
|
| 182 |
"outputs": [],
|
| 183 |
"source": [
|
| 184 |
-
"from transformers import TFAutoModelForTokenClassification,
|
| 185 |
"import numpy as np\n",
|
| 186 |
"\n",
|
| 187 |
-
"tokenizer =
|
| 188 |
]
|
| 189 |
},
|
| 190 |
{
|
| 191 |
"cell_type": "code",
|
| 192 |
-
"execution_count":
|
| 193 |
"metadata": {},
|
| 194 |
"outputs": [],
|
| 195 |
"source": [
|
| 196 |
"tokenized_sentences = tokenizer(\n",
|
| 197 |
" processed_sentences,\n",
|
| 198 |
" is_split_into_words=True,\n",
|
|
|
|
| 199 |
" truncation=True,\n",
|
| 200 |
" padding=\"max_length\",\n",
|
| 201 |
" max_length=MAX_LEN,\n",
|
|
@@ -204,7 +203,62 @@
|
|
| 204 |
},
|
| 205 |
{
|
| 206 |
"cell_type": "code",
|
| 207 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
"metadata": {},
|
| 209 |
"outputs": [],
|
| 210 |
"source": [
|
|
@@ -220,14 +274,14 @@
|
|
| 220 |
") = train_test_split(\n",
|
| 221 |
" tokenized_sentences[\"input_ids\"],\n",
|
| 222 |
" tokenized_sentences[\"attention_mask\"],\n",
|
| 223 |
-
"
|
| 224 |
" test_size=0.2,\n",
|
| 225 |
")"
|
| 226 |
]
|
| 227 |
},
|
| 228 |
{
|
| 229 |
"cell_type": "code",
|
| 230 |
-
"execution_count":
|
| 231 |
"metadata": {},
|
| 232 |
"outputs": [],
|
| 233 |
"source": [
|
|
@@ -254,7 +308,7 @@
|
|
| 254 |
},
|
| 255 |
{
|
| 256 |
"cell_type": "code",
|
| 257 |
-
"execution_count":
|
| 258 |
"metadata": {},
|
| 259 |
"outputs": [],
|
| 260 |
"source": [
|
|
@@ -290,37 +344,16 @@
|
|
| 290 |
},
|
| 291 |
{
|
| 292 |
"cell_type": "code",
|
| 293 |
-
"execution_count":
|
| 294 |
-
"metadata": {},
|
| 295 |
-
"outputs": [],
|
| 296 |
-
"source": [
|
| 297 |
-
"class_weights = {0: 0.1, 1: 20.0, 2: 20.0}\n",
|
| 298 |
-
"\n",
|
| 299 |
-
"\n",
|
| 300 |
-
"def weighted_loss(y_true, y_pred):\n",
|
| 301 |
-
" weights = tf.constant(\n",
|
| 302 |
-
" [class_weights[i] for i in range(len(class_weights))], dtype=tf.float32\n",
|
| 303 |
-
" )\n",
|
| 304 |
-
" weights = tf.gather(\n",
|
| 305 |
-
" weights, tf.cast(y_true, tf.int32)\n",
|
| 306 |
-
" ) # Get weights for true labels\n",
|
| 307 |
-
" loss = tf.keras.losses.sparse_categorical_crossentropy(\n",
|
| 308 |
-
" y_true, y_pred, from_logits=True\n",
|
| 309 |
-
" )\n",
|
| 310 |
-
" return loss * weights"
|
| 311 |
-
]
|
| 312 |
-
},
|
| 313 |
-
{
|
| 314 |
-
"cell_type": "code",
|
| 315 |
-
"execution_count": 61,
|
| 316 |
"metadata": {},
|
| 317 |
"outputs": [
|
| 318 |
{
|
| 319 |
"name": "stderr",
|
| 320 |
"output_type": "stream",
|
| 321 |
"text": [
|
| 322 |
-
"
|
| 323 |
-
"
|
|
|
|
| 324 |
"Some weights or buffers of the TF 2.0 model TFCamembertForTokenClassification were not initialized from the PyTorch model and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 325 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 326 |
]
|
|
@@ -330,73 +363,77 @@
|
|
| 330 |
"from focal_loss import SparseCategoricalFocalLoss\n",
|
| 331 |
"\n",
|
| 332 |
"camembert = TFAutoModelForTokenClassification.from_pretrained(\n",
|
| 333 |
-
" \"
|
| 334 |
")\n",
|
| 335 |
"\n",
|
| 336 |
"loss_func = SparseCategoricalFocalLoss(\n",
|
| 337 |
-
" gamma=2, class_weight=[
|
| 338 |
")\n",
|
| 339 |
"\n",
|
| 340 |
"camembert.compile(\n",
|
| 341 |
-
" optimizer=tf.keras.optimizers.legacy.Adam(
|
| 342 |
-
" loss=
|
| 343 |
-
" metrics=[
|
| 344 |
")"
|
| 345 |
]
|
| 346 |
},
|
| 347 |
{
|
| 348 |
"cell_type": "code",
|
| 349 |
-
"execution_count":
|
| 350 |
"metadata": {},
|
| 351 |
"outputs": [],
|
| 352 |
"source": [
|
| 353 |
-
"train_dataset = train_dataset.batch(
|
| 354 |
-
"test_dataset = test_dataset.batch(
|
| 355 |
]
|
| 356 |
},
|
| 357 |
{
|
| 358 |
"cell_type": "code",
|
| 359 |
-
"execution_count":
|
| 360 |
"metadata": {},
|
| 361 |
"outputs": [
|
| 362 |
{
|
| 363 |
"name": "stdout",
|
| 364 |
"output_type": "stream",
|
| 365 |
"text": [
|
| 366 |
-
"Epoch 1/
|
| 367 |
-
"272/272 [==============================] - 1596s 6s/step - loss: 0.0124 - accuracy: 0.9677 - entity_accuracy: 0.8099 - val_loss: 0.0038 - val_accuracy: 0.9799 - val_entity_accuracy: 0.9682\n",
|
| 368 |
-
"Epoch 2/4\n",
|
| 369 |
-
"272/272 [==============================] - 1560s 6s/step - loss: 0.0031 - accuracy: 0.9852 - entity_accuracy: 0.9684 - val_loss: 0.0019 - val_accuracy: 0.9885 - val_entity_accuracy: 0.9820\n",
|
| 370 |
-
"Epoch 3/4\n",
|
| 371 |
-
"272/272 [==============================] - 1560s 6s/step - loss: 0.0020 - accuracy: 0.9907 - entity_accuracy: 0.9767 - val_loss: 0.0016 - val_accuracy: 0.9941 - val_entity_accuracy: 0.9775\n",
|
| 372 |
-
"Epoch 4/4\n",
|
| 373 |
-
"272/272 [==============================] - 1605s 6s/step - loss: 0.0016 - accuracy: 0.9923 - entity_accuracy: 0.9789 - val_loss: 0.0017 - val_accuracy: 0.9920 - val_entity_accuracy: 0.9831\n"
|
| 374 |
]
|
| 375 |
},
|
| 376 |
{
|
| 377 |
-
"
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
"
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
}
|
| 386 |
],
|
| 387 |
"source": [
|
| 388 |
-
"
|
| 389 |
-
" monitor=\"val_loss\", patience=0, restore_best_weights=True\n",
|
| 390 |
")\n",
|
| 391 |
"\n",
|
|
|
|
|
|
|
| 392 |
"camembert.fit(\n",
|
| 393 |
-
" train_dataset
|
|
|
|
|
|
|
|
|
|
| 394 |
")"
|
| 395 |
]
|
| 396 |
},
|
| 397 |
{
|
| 398 |
"cell_type": "code",
|
| 399 |
-
"execution_count":
|
| 400 |
"metadata": {},
|
| 401 |
"outputs": [
|
| 402 |
{
|
|
@@ -405,7 +442,7 @@
|
|
| 405 |
"<tf.Tensor: shape=(), dtype=float32, numpy=0.1186538115143776>"
|
| 406 |
]
|
| 407 |
},
|
| 408 |
-
"execution_count":
|
| 409 |
"metadata": {},
|
| 410 |
"output_type": "execute_result"
|
| 411 |
}
|
|
@@ -421,26 +458,18 @@
|
|
| 421 |
},
|
| 422 |
{
|
| 423 |
"cell_type": "code",
|
| 424 |
-
"execution_count":
|
| 425 |
"metadata": {},
|
| 426 |
"outputs": [],
|
| 427 |
"source": [
|
| 428 |
-
"camembert.save_pretrained(\"./models/
|
| 429 |
]
|
| 430 |
},
|
| 431 |
{
|
| 432 |
"cell_type": "code",
|
| 433 |
-
"execution_count":
|
| 434 |
"metadata": {},
|
| 435 |
-
"outputs": [
|
| 436 |
-
{
|
| 437 |
-
"name": "stderr",
|
| 438 |
-
"output_type": "stream",
|
| 439 |
-
"text": [
|
| 440 |
-
"tf_model.h5: 100%|██████████| 440M/440M [00:20<00:00, 21.8MB/s] \n"
|
| 441 |
-
]
|
| 442 |
-
}
|
| 443 |
-
],
|
| 444 |
"source": [
|
| 445 |
"# camembert.push_to_hub(\"CamemBERT-NER-Travel\")"
|
| 446 |
]
|
|
@@ -462,7 +491,7 @@
|
|
| 462 |
"name": "python",
|
| 463 |
"nbconvert_exporter": "python",
|
| 464 |
"pygments_lexer": "ipython3",
|
| 465 |
-
"version": "3.12.
|
| 466 |
}
|
| 467 |
},
|
| 468 |
"nbformat": 4,
|
|
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
+
"execution_count": 86,
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [
|
| 17 |
+
{
|
| 18 |
+
"name": "stderr",
|
| 19 |
+
"output_type": "stream",
|
| 20 |
+
"text": [
|
| 21 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
| 22 |
+
"To disable this warning, you can either:\n",
|
| 23 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
| 24 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
{
|
| 28 |
"name": "stdout",
|
| 29 |
"output_type": "stream",
|
| 30 |
"text": [
|
| 31 |
+
"Requirement already satisfied: transformers in ./venv/lib/python3.12/site-packages (4.47.1)\n",
|
| 32 |
"Requirement already satisfied: tf-keras in ./venv/lib/python3.12/site-packages (2.18.0)\n",
|
| 33 |
+
"Requirement already satisfied: focal-loss in ./venv/lib/python3.12/site-packages (0.0.7)\n",
|
|
|
|
| 34 |
"Requirement already satisfied: filelock in ./venv/lib/python3.12/site-packages (from transformers) (3.16.1)\n",
|
| 35 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.24.0 in ./venv/lib/python3.12/site-packages (from transformers) (0.26.5)\n",
|
| 36 |
"Requirement already satisfied: numpy>=1.17 in ./venv/lib/python3.12/site-packages (from transformers) (1.26.4)\n",
|
| 37 |
+
"Requirement already satisfied: packaging>=20.0 in ./venv/lib/python3.12/site-packages (from transformers) (24.2)\n",
|
| 38 |
"Requirement already satisfied: pyyaml>=5.1 in ./venv/lib/python3.12/site-packages (from transformers) (6.0.2)\n",
|
| 39 |
+
"Requirement already satisfied: regex!=2019.12.17 in ./venv/lib/python3.12/site-packages (from transformers) (2024.11.6)\n",
|
| 40 |
"Requirement already satisfied: requests in ./venv/lib/python3.12/site-packages (from transformers) (2.32.3)\n",
|
| 41 |
+
"Requirement already satisfied: tokenizers<0.22,>=0.21 in ./venv/lib/python3.12/site-packages (from transformers) (0.21.0)\n",
|
| 42 |
"Requirement already satisfied: safetensors>=0.4.1 in ./venv/lib/python3.12/site-packages (from transformers) (0.4.5)\n",
|
| 43 |
"Requirement already satisfied: tqdm>=4.27 in ./venv/lib/python3.12/site-packages (from transformers) (4.66.5)\n",
|
| 44 |
"Requirement already satisfied: tensorflow<2.19,>=2.18 in ./venv/lib/python3.12/site-packages (from tf-keras) (2.18.0)\n",
|
| 45 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in ./venv/lib/python3.12/site-packages (from huggingface-hub<1.0,>=0.24.0->transformers) (2024.10.0)\n",
|
| 46 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in ./venv/lib/python3.12/site-packages (from huggingface-hub<1.0,>=0.24.0->transformers) (4.12.2)\n",
|
| 47 |
"Requirement already satisfied: absl-py>=1.0.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (2.1.0)\n",
|
| 48 |
"Requirement already satisfied: astunparse>=1.6.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.6.3)\n",
|
| 49 |
"Requirement already satisfied: flatbuffers>=24.3.25 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (24.3.25)\n",
|
|
|
|
| 52 |
"Requirement already satisfied: libclang>=13.0.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (18.1.1)\n",
|
| 53 |
"Requirement already satisfied: opt-einsum>=2.3.2 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (3.4.0)\n",
|
| 54 |
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (4.25.5)\n",
|
| 55 |
+
"Requirement already satisfied: setuptools in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (75.6.0)\n",
|
| 56 |
+
"Requirement already satisfied: six>=1.12.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.17.0)\n",
|
| 57 |
"Requirement already satisfied: termcolor>=1.1.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (2.5.0)\n",
|
| 58 |
+
"Requirement already satisfied: wrapt>=1.11.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.17.0)\n",
|
| 59 |
+
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (1.68.1)\n",
|
| 60 |
"Requirement already satisfied: tensorboard<2.19,>=2.18 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (2.18.0)\n",
|
| 61 |
"Requirement already satisfied: keras>=3.5.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (3.7.0)\n",
|
| 62 |
"Requirement already satisfied: h5py>=3.11.0 in ./venv/lib/python3.12/site-packages (from tensorflow<2.19,>=2.18->tf-keras) (3.12.1)\n",
|
|
|
|
| 65 |
"Requirement already satisfied: idna<4,>=2.5 in ./venv/lib/python3.12/site-packages (from requests->transformers) (3.10)\n",
|
| 66 |
"Requirement already satisfied: urllib3<3,>=1.21.1 in ./venv/lib/python3.12/site-packages (from requests->transformers) (2.2.3)\n",
|
| 67 |
"Requirement already satisfied: certifi>=2017.4.17 in ./venv/lib/python3.12/site-packages (from requests->transformers) (2024.8.30)\n",
|
| 68 |
+
"Requirement already satisfied: wheel<1.0,>=0.23.0 in ./venv/lib/python3.12/site-packages (from astunparse>=1.6.0->tensorflow<2.19,>=2.18->tf-keras) (0.45.1)\n",
|
| 69 |
+
"Requirement already satisfied: rich in ./venv/lib/python3.12/site-packages (from keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (13.9.4)\n",
|
| 70 |
"Requirement already satisfied: namex in ./venv/lib/python3.12/site-packages (from keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (0.0.8)\n",
|
| 71 |
+
"Requirement already satisfied: optree in ./venv/lib/python3.12/site-packages (from keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (0.13.1)\n",
|
| 72 |
"Requirement already satisfied: markdown>=2.6.8 in ./venv/lib/python3.12/site-packages (from tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (3.7)\n",
|
| 73 |
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in ./venv/lib/python3.12/site-packages (from tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (0.7.2)\n",
|
| 74 |
+
"Requirement already satisfied: werkzeug>=1.0.1 in ./venv/lib/python3.12/site-packages (from tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (3.1.3)\n",
|
| 75 |
"Requirement already satisfied: MarkupSafe>=2.1.1 in ./venv/lib/python3.12/site-packages (from werkzeug>=1.0.1->tensorboard<2.19,>=2.18->tensorflow<2.19,>=2.18->tf-keras) (3.0.2)\n",
|
| 76 |
"Requirement already satisfied: markdown-it-py>=2.2.0 in ./venv/lib/python3.12/site-packages (from rich->keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (3.0.0)\n",
|
| 77 |
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in ./venv/lib/python3.12/site-packages (from rich->keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (2.18.0)\n",
|
| 78 |
+
"Requirement already satisfied: mdurl~=0.1 in ./venv/lib/python3.12/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.5.0->tensorflow<2.19,>=2.18->tf-keras) (0.1.2)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
]
|
| 80 |
}
|
| 81 |
],
|
|
|
|
| 85 |
},
|
| 86 |
{
|
| 87 |
"cell_type": "code",
|
| 88 |
+
"execution_count": 87,
|
| 89 |
"metadata": {},
|
| 90 |
"outputs": [],
|
| 91 |
"source": [
|
|
|
|
| 96 |
},
|
| 97 |
{
|
| 98 |
"cell_type": "code",
|
| 99 |
+
"execution_count": 88,
|
| 100 |
"metadata": {},
|
| 101 |
"outputs": [],
|
| 102 |
"source": [
|
|
|
|
| 105 |
},
|
| 106 |
{
|
| 107 |
"cell_type": "code",
|
| 108 |
+
"execution_count": 89,
|
| 109 |
"metadata": {},
|
| 110 |
"outputs": [],
|
| 111 |
"source": [
|
|
|
|
| 116 |
")\n",
|
| 117 |
"\n",
|
| 118 |
"# To avoid overfitting the model on sentences that don't have any labels\n",
|
| 119 |
+
"lambda_sentences, lambda_labels, _, __ = dp.from_bio_file_to_examples(\n",
|
| 120 |
+
" \"./data/bio/fr.bio/1k_train_unlabeled_samples.bio\"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
")\n",
|
| 122 |
"\n",
|
| 123 |
+
"long_sentences, long_labels, _, __ = dp.from_bio_file_to_examples(\n",
|
| 124 |
+
" \"./data/bio/fr.bio/1k_train_large_samples.bio\"\n",
|
| 125 |
+
")"
|
| 126 |
]
|
| 127 |
},
|
| 128 |
{
|
| 129 |
"cell_type": "code",
|
| 130 |
+
"execution_count": 90,
|
| 131 |
"metadata": {},
|
| 132 |
"outputs": [],
|
| 133 |
"source": [
|
| 134 |
+
"sentences = sentences + lambda_sentences + long_sentences\n",
|
| 135 |
+
"labels = labels + lambda_labels + long_labels"
|
|
|
|
|
|
|
|
|
|
| 136 |
]
|
| 137 |
},
|
| 138 |
{
|
| 139 |
"cell_type": "code",
|
| 140 |
+
"execution_count": 91,
|
| 141 |
"metadata": {},
|
| 142 |
"outputs": [],
|
| 143 |
"source": [
|
| 144 |
+
"import app.travel_resolver.libs.nlp.data_processing as dp\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"processed_sentences, processed_labels = dp.process_sentences_and_labels(\n",
|
| 147 |
+
" sentences, labels, return_tokens=True, stemming=False\n",
|
| 148 |
+
")"
|
| 149 |
]
|
| 150 |
},
|
| 151 |
{
|
| 152 |
"cell_type": "code",
|
| 153 |
+
"execution_count": 92,
|
| 154 |
"metadata": {},
|
| 155 |
"outputs": [],
|
| 156 |
"source": [
|
|
|
|
| 159 |
" as well as the embedding size\n",
|
| 160 |
"\"\"\"\n",
|
| 161 |
"\n",
|
| 162 |
+
"MAX_LEN = 150"
|
| 163 |
]
|
| 164 |
},
|
| 165 |
{
|
| 166 |
"cell_type": "code",
|
| 167 |
+
"execution_count": 93,
|
| 168 |
"metadata": {},
|
| 169 |
"outputs": [],
|
| 170 |
"source": [
|
|
|
|
| 175 |
},
|
| 176 |
{
|
| 177 |
"cell_type": "code",
|
| 178 |
+
"execution_count": 94,
|
| 179 |
"metadata": {},
|
| 180 |
"outputs": [],
|
| 181 |
"source": [
|
| 182 |
+
"from transformers import TFAutoModelForTokenClassification, CamembertTokenizerFast\n",
|
| 183 |
"import numpy as np\n",
|
| 184 |
"\n",
|
| 185 |
+
"tokenizer = CamembertTokenizerFast.from_pretrained(\"cmarkea/distilcamembert-base\")"
|
| 186 |
]
|
| 187 |
},
|
| 188 |
{
|
| 189 |
"cell_type": "code",
|
| 190 |
+
"execution_count": 95,
|
| 191 |
"metadata": {},
|
| 192 |
"outputs": [],
|
| 193 |
"source": [
|
| 194 |
"tokenized_sentences = tokenizer(\n",
|
| 195 |
" processed_sentences,\n",
|
| 196 |
" is_split_into_words=True,\n",
|
| 197 |
+
" return_offsets_mapping=True,\n",
|
| 198 |
" truncation=True,\n",
|
| 199 |
" padding=\"max_length\",\n",
|
| 200 |
" max_length=MAX_LEN,\n",
|
|
|
|
| 203 |
},
|
| 204 |
{
|
| 205 |
"cell_type": "code",
|
| 206 |
+
"execution_count": 96,
|
| 207 |
+
"metadata": {},
|
| 208 |
+
"outputs": [],
|
| 209 |
+
"source": [
|
| 210 |
+
"def align_labels_with_tokens(encodings, labels):\n",
|
| 211 |
+
" \"\"\"\n",
|
| 212 |
+
" Aligns the labels to match the tokenized outputs.\n",
|
| 213 |
+
"\n",
|
| 214 |
+
" Args:\n",
|
| 215 |
+
" encodings (BatchEncoding): Tokenized outputs from the Hugging Face tokenizer (must use a fast tokenizer).\n",
|
| 216 |
+
" labels (List[List[int]]): Original labels for each sentence before tokenization. Each inner list corresponds to one sentence.\n",
|
| 217 |
+
"\n",
|
| 218 |
+
" Returns:\n",
|
| 219 |
+
" List[List[int]]: Aligned labels, where each inner list corresponds to the aligned labels for the tokenized sentence.\n",
|
| 220 |
+
" Special tokens and padding are assigned a value of -100.\n",
|
| 221 |
+
" \"\"\"\n",
|
| 222 |
+
" adapted_labels = []\n",
|
| 223 |
+
"\n",
|
| 224 |
+
" for i, label in enumerate(labels):\n",
|
| 225 |
+
" word_ids = encodings.word_ids(\n",
|
| 226 |
+
" batch_index=i\n",
|
| 227 |
+
" ) # Get word IDs for the i-th sentence\n",
|
| 228 |
+
" aligned_labels = []\n",
|
| 229 |
+
" previous_word_id = None\n",
|
| 230 |
+
"\n",
|
| 231 |
+
" for word_id in word_ids:\n",
|
| 232 |
+
" if word_id is None:\n",
|
| 233 |
+
" # Special tokens (e.g., [CLS], [SEP], or padding)\n",
|
| 234 |
+
" aligned_labels.append(-100)\n",
|
| 235 |
+
" elif word_id != previous_word_id:\n",
|
| 236 |
+
" # New word\n",
|
| 237 |
+
" aligned_labels.append(label[word_id])\n",
|
| 238 |
+
" else:\n",
|
| 239 |
+
" # Subword token (same word)\n",
|
| 240 |
+
" aligned_labels.append(\n",
|
| 241 |
+
" label[word_id]\n",
|
| 242 |
+
" ) # Or append -100 to ignore subwords\n",
|
| 243 |
+
" previous_word_id = word_id\n",
|
| 244 |
+
"\n",
|
| 245 |
+
" adapted_labels.append(aligned_labels)\n",
|
| 246 |
+
"\n",
|
| 247 |
+
" return adapted_labels"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"cell_type": "code",
|
| 252 |
+
"execution_count": 97,
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"outputs": [],
|
| 255 |
+
"source": [
|
| 256 |
+
"readapted_labels = align_labels_with_tokens(tokenized_sentences, padded_labels)"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "code",
|
| 261 |
+
"execution_count": 98,
|
| 262 |
"metadata": {},
|
| 263 |
"outputs": [],
|
| 264 |
"source": [
|
|
|
|
| 274 |
") = train_test_split(\n",
|
| 275 |
" tokenized_sentences[\"input_ids\"],\n",
|
| 276 |
" tokenized_sentences[\"attention_mask\"],\n",
|
| 277 |
+
" readapted_labels,\n",
|
| 278 |
" test_size=0.2,\n",
|
| 279 |
")"
|
| 280 |
]
|
| 281 |
},
|
| 282 |
{
|
| 283 |
"cell_type": "code",
|
| 284 |
+
"execution_count": 99,
|
| 285 |
"metadata": {},
|
| 286 |
"outputs": [],
|
| 287 |
"source": [
|
|
|
|
| 308 |
},
|
| 309 |
{
|
| 310 |
"cell_type": "code",
|
| 311 |
+
"execution_count": 100,
|
| 312 |
"metadata": {},
|
| 313 |
"outputs": [],
|
| 314 |
"source": [
|
|
|
|
| 344 |
},
|
| 345 |
{
|
| 346 |
"cell_type": "code",
|
| 347 |
+
"execution_count": 101,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
"metadata": {},
|
| 349 |
"outputs": [
|
| 350 |
{
|
| 351 |
"name": "stderr",
|
| 352 |
"output_type": "stream",
|
| 353 |
"text": [
|
| 354 |
+
"Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFCamembertForTokenClassification: ['roberta.embeddings.position_ids']\n",
|
| 355 |
+
"- This IS expected if you are initializing TFCamembertForTokenClassification from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 356 |
+
"- This IS NOT expected if you are initializing TFCamembertForTokenClassification from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 357 |
"Some weights or buffers of the TF 2.0 model TFCamembertForTokenClassification were not initialized from the PyTorch model and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 358 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 359 |
]
|
|
|
|
| 363 |
"from focal_loss import SparseCategoricalFocalLoss\n",
|
| 364 |
"\n",
|
| 365 |
"camembert = TFAutoModelForTokenClassification.from_pretrained(\n",
|
| 366 |
+
" \"cmarkea/distilcamembert-base\", num_labels=len(unique_labels)\n",
|
| 367 |
")\n",
|
| 368 |
"\n",
|
| 369 |
"loss_func = SparseCategoricalFocalLoss(\n",
|
| 370 |
+
" gamma=2, class_weight=[1, 10, 10], from_logits=True\n",
|
| 371 |
")\n",
|
| 372 |
"\n",
|
| 373 |
"camembert.compile(\n",
|
| 374 |
+
" optimizer=tf.keras.optimizers.legacy.Adam(8e-4),\n",
|
| 375 |
+
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
|
| 376 |
+
" metrics=[entity_accuracy],\n",
|
| 377 |
")"
|
| 378 |
]
|
| 379 |
},
|
| 380 |
{
|
| 381 |
"cell_type": "code",
|
| 382 |
+
"execution_count": 102,
|
| 383 |
"metadata": {},
|
| 384 |
"outputs": [],
|
| 385 |
"source": [
|
| 386 |
+
"train_dataset = train_dataset.batch(64)\n",
|
| 387 |
+
"test_dataset = test_dataset.batch(64)"
|
| 388 |
]
|
| 389 |
},
|
| 390 |
{
|
| 391 |
"cell_type": "code",
|
| 392 |
+
"execution_count": 103,
|
| 393 |
"metadata": {},
|
| 394 |
"outputs": [
|
| 395 |
{
|
| 396 |
"name": "stdout",
|
| 397 |
"output_type": "stream",
|
| 398 |
"text": [
|
| 399 |
+
"Epoch 1/10\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
]
|
| 401 |
},
|
| 402 |
{
|
| 403 |
+
"ename": "TypeError",
|
| 404 |
+
"evalue": "in user code:\n\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/engine/training.py\", line 1398, in train_function *\n return step_function(self, iterator)\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/engine/training.py\", line 1381, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/engine/training.py\", line 1370, in run_step **\n outputs = model.train_step(data)\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/transformers/modeling_tf_utils.py\", line 1672, in train_step\n y_pred = self(x, training=True)\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/utils/traceback_utils.py\", line 70, in error_handler\n raise e.with_traceback(filtered_tb) from None\n File \"/var/folders/3h/5n6s9rcj3sx0gpncsxbq_99m0000gn/T/__autograph_generated_filepc984rni.py\", line 40, in tf__run_call_with_unpacked_inputs\n raise\n\n TypeError: Exception encountered when calling layer 'tf_camembert_for_token_classification_5' (type TFCamembertForTokenClassification).\n \n in user code:\n \n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/transformers/modeling_tf_utils.py\", line 1393, in run_call_with_unpacked_inputs *\n return func(self, **unpacked_inputs)\n \n TypeError: outer_factory.<locals>.inner_factory.<locals>.tf__call() got an unexpected keyword argument 'offset_mapping'\n \n \n Call arguments received by layer 'tf_camembert_for_token_classification_5' (type TFCamembertForTokenClassification):\n • input_ids={'input_ids': 'tf.Tensor(shape=(None, 150), dtype=int32)', 'attention_mask': 'tf.Tensor(shape=(None, 150), dtype=int32)', 'offset_mapping': 'tf.Tensor(shape=(None, 150, 2), dtype=int32)'}\n • attention_mask=None\n • token_type_ids=None\n • position_ids=None\n • head_mask=None\n • inputs_embeds=None\n • output_attentions=None\n • output_hidden_states=None\n • return_dict=None\n • labels=None\n • training=True\n",
|
| 405 |
+
"output_type": "error",
|
| 406 |
+
"traceback": [
|
| 407 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 408 |
+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 409 |
+
"Cell \u001b[0;32mIn[103], line 7\u001b[0m\n\u001b[1;32m 1\u001b[0m early_stopping \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mEarlyStopping(\n\u001b[1;32m 2\u001b[0m monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m\"\u001b[39m, min_delta\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.001\u001b[39m, patience\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, restore_best_weights\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 3\u001b[0m )\n\u001b[1;32m 5\u001b[0m csv_logger \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mCSVLogger(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtraining.log\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m----> 7\u001b[0m \u001b[43mcamembert\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtest_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcsv_logger\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 12\u001b[0m \u001b[43m)\u001b[49m\n",
|
| 410 |
+
"File \u001b[0;32m~/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/transformers/modeling_tf_utils.py:1229\u001b[0m, in \u001b[0;36mTFPreTrainedModel.fit\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1226\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(keras\u001b[38;5;241m.\u001b[39mModel\u001b[38;5;241m.\u001b[39mfit)\n\u001b[1;32m 1227\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfit\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 1228\u001b[0m args, kwargs \u001b[38;5;241m=\u001b[39m convert_batch_encoding(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m-> 1229\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 411 |
+
"File \u001b[0;32m~/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/utils/traceback_utils.py:70\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 67\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m 68\u001b[0m \u001b[38;5;66;03m# To get the full stack trace, call:\u001b[39;00m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;66;03m# `tf.debugging.disable_traceback_filtering()`\u001b[39;00m\n\u001b[0;32m---> 70\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n",
|
| 412 |
+
"File \u001b[0;32m/var/folders/3h/5n6s9rcj3sx0gpncsxbq_99m0000gn/T/__autograph_generated_filelw03dryu.py:15\u001b[0m, in \u001b[0;36mouter_factory.<locals>.inner_factory.<locals>.tf__train_function\u001b[0;34m(iterator)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 14\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m---> 15\u001b[0m retval_ \u001b[38;5;241m=\u001b[39m ag__\u001b[38;5;241m.\u001b[39mconverted_call(ag__\u001b[38;5;241m.\u001b[39mld(step_function), (ag__\u001b[38;5;241m.\u001b[39mld(\u001b[38;5;28mself\u001b[39m), ag__\u001b[38;5;241m.\u001b[39mld(iterator)), \u001b[38;5;28;01mNone\u001b[39;00m, fscope)\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n\u001b[1;32m 17\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
|
| 413 |
+
"File \u001b[0;32m~/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/transformers/modeling_tf_utils.py:1672\u001b[0m, in \u001b[0;36mTFPreTrainedModel.train_step\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m 1670\u001b[0m y_pred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m(x, training\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, return_loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 1671\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1672\u001b[0m y_pred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtraining\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 1673\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_using_dummy_loss:\n\u001b[1;32m 1674\u001b[0m loss \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcompiled_loss(y_pred\u001b[38;5;241m.\u001b[39mloss, y_pred\u001b[38;5;241m.\u001b[39mloss, sample_weight, regularization_losses\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlosses)\n",
|
| 414 |
+
"File \u001b[0;32m/var/folders/3h/5n6s9rcj3sx0gpncsxbq_99m0000gn/T/__autograph_generated_filepc984rni.py:37\u001b[0m, in \u001b[0;36mouter_factory.<locals>.inner_factory.<locals>.tf__run_call_with_unpacked_inputs\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 36\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m---> 37\u001b[0m retval_ \u001b[38;5;241m=\u001b[39m ag__\u001b[38;5;241m.\u001b[39mconverted_call(ag__\u001b[38;5;241m.\u001b[39mld(func), (ag__\u001b[38;5;241m.\u001b[39mld(\u001b[38;5;28mself\u001b[39m),), \u001b[38;5;28mdict\u001b[39m(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mag__\u001b[38;5;241m.\u001b[39mld(unpacked_inputs)), fscope)\n\u001b[1;32m 38\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n\u001b[1;32m 39\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
|
| 415 |
+
"\u001b[0;31mTypeError\u001b[0m: in user code:\n\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/engine/training.py\", line 1398, in train_function *\n return step_function(self, iterator)\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/engine/training.py\", line 1381, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/engine/training.py\", line 1370, in run_step **\n outputs = model.train_step(data)\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/transformers/modeling_tf_utils.py\", line 1672, in train_step\n y_pred = self(x, training=True)\n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/tf_keras/src/utils/traceback_utils.py\", line 70, in error_handler\n raise e.with_traceback(filtered_tb) from None\n File \"/var/folders/3h/5n6s9rcj3sx0gpncsxbq_99m0000gn/T/__autograph_generated_filepc984rni.py\", line 40, in tf__run_call_with_unpacked_inputs\n raise\n\n TypeError: Exception encountered when calling layer 'tf_camembert_for_token_classification_5' (type TFCamembertForTokenClassification).\n \n in user code:\n \n File \"/Users/az-r-ow/Developer/TravelOrderResolver/venv/lib/python3.12/site-packages/transformers/modeling_tf_utils.py\", line 1393, in run_call_with_unpacked_inputs *\n return func(self, **unpacked_inputs)\n \n TypeError: outer_factory.<locals>.inner_factory.<locals>.tf__call() got an unexpected keyword argument 'offset_mapping'\n \n \n Call arguments received by layer 'tf_camembert_for_token_classification_5' (type TFCamembertForTokenClassification):\n • input_ids={'input_ids': 'tf.Tensor(shape=(None, 150), dtype=int32)', 'attention_mask': 'tf.Tensor(shape=(None, 150), dtype=int32)', 'offset_mapping': 'tf.Tensor(shape=(None, 150, 2), dtype=int32)'}\n • attention_mask=None\n • token_type_ids=None\n • position_ids=None\n • head_mask=None\n • inputs_embeds=None\n • output_attentions=None\n • output_hidden_states=None\n • return_dict=None\n • labels=None\n • training=True\n"
|
| 416 |
+
]
|
| 417 |
}
|
| 418 |
],
|
| 419 |
"source": [
|
| 420 |
+
"early_stopping = tf.keras.callbacks.EarlyStopping(\n",
|
| 421 |
+
" monitor=\"val_loss\", min_delta=0.001, patience=0, restore_best_weights=True\n",
|
| 422 |
")\n",
|
| 423 |
"\n",
|
| 424 |
+
"csv_logger = tf.keras.callbacks.CSVLogger(\"training.log\")\n",
|
| 425 |
+
"\n",
|
| 426 |
"camembert.fit(\n",
|
| 427 |
+
" train_dataset,\n",
|
| 428 |
+
" validation_data=test_dataset,\n",
|
| 429 |
+
" epochs=10,\n",
|
| 430 |
+
" callbacks=[early_stopping, csv_logger],\n",
|
| 431 |
")"
|
| 432 |
]
|
| 433 |
},
|
| 434 |
{
|
| 435 |
"cell_type": "code",
|
| 436 |
+
"execution_count": 76,
|
| 437 |
"metadata": {},
|
| 438 |
"outputs": [
|
| 439 |
{
|
|
|
|
| 442 |
"<tf.Tensor: shape=(), dtype=float32, numpy=0.1186538115143776>"
|
| 443 |
]
|
| 444 |
},
|
| 445 |
+
"execution_count": 76,
|
| 446 |
"metadata": {},
|
| 447 |
"output_type": "execute_result"
|
| 448 |
}
|
|
|
|
| 458 |
},
|
| 459 |
{
|
| 460 |
"cell_type": "code",
|
| 461 |
+
"execution_count": 79,
|
| 462 |
"metadata": {},
|
| 463 |
"outputs": [],
|
| 464 |
"source": [
|
| 465 |
+
"camembert.save_pretrained(\"./models/distilcamembert-base-ner-cross-entropy-11\")"
|
| 466 |
]
|
| 467 |
},
|
| 468 |
{
|
| 469 |
"cell_type": "code",
|
| 470 |
+
"execution_count": 78,
|
| 471 |
"metadata": {},
|
| 472 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
"source": [
|
| 474 |
"# camembert.push_to_hub(\"CamemBERT-NER-Travel\")"
|
| 475 |
]
|
|
|
|
| 491 |
"name": "python",
|
| 492 |
"nbconvert_exporter": "python",
|
| 493 |
"pygments_lexer": "ipython3",
|
| 494 |
+
"version": "3.12.8"
|
| 495 |
}
|
| 496 |
},
|
| 497 |
"nbformat": 4,
|
deepl_ner.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
CHANGED
|
@@ -13,4 +13,6 @@ hmmlearn # for hidden markov models
|
|
| 13 |
ipykernel
|
| 14 |
tabulate
|
| 15 |
transformers
|
| 16 |
-
sentencepiece
|
|
|
|
|
|
|
|
|
| 13 |
ipykernel
|
| 14 |
tabulate
|
| 15 |
transformers
|
| 16 |
+
sentencepiece
|
| 17 |
+
stanza
|
| 18 |
+
pydot
|