Az-r-ow
commited on
Commit
Β·
dcd93f5
1
Parent(s):
74d5c55
feat(ihm): semi-functionnal interface, minor things to add
Browse files- .gitignore +0 -10
- app/app.py +229 -150
- app/travel_resolver/libs/nlp/ner/models.py +13 -24
- app/travel_resolver/libs/nlp/ner/models_definitions/__init__.py +0 -0
- app/travel_resolver/libs/nlp/ner/models_definitions/bilstm/__init__.py +0 -0
- app/travel_resolver/libs/nlp/ner/models_definitions/bilstm/architecture.py +21 -0
- app/travel_resolver/libs/nlp/ner/models_definitions/bilstm/bilstm.weights.h5 +3 -0
- app/travel_resolver/libs/nlp/ner/{models β models_definitions}/bilstm/model.keras +0 -0
- app/travel_resolver/libs/nlp/ner/{models β models_definitions}/bilstm/tf_version.txt +0 -0
- app/travel_resolver/libs/nlp/ner/models_definitions/lstm_with_pos/__init__.py +0 -0
- app/travel_resolver/libs/nlp/ner/models_definitions/lstm_with_pos/architecture.py +37 -0
- app/travel_resolver/libs/nlp/ner/models_definitions/lstm_with_pos/lstm_with_pos.weights.h5 +3 -0
- app/travel_resolver/libs/nlp/ner/{models β models_definitions}/lstm_with_pos/model.keras +0 -0
- app/travel_resolver/libs/nlp/ner/{models β models_definitions}/lstm_with_pos/tf_version.txt +0 -0
- app/travel_resolver/tests/data_processing_test.py +1 -1
- test.py +10 -0
- test.txt +1 -0
- test2.txt +2 -0
.gitignore
CHANGED
|
@@ -167,15 +167,5 @@ cython_debug/
|
|
| 167 |
# Remove test ouptuts
|
| 168 |
output.*
|
| 169 |
|
| 170 |
-
# Remove vscode settings
|
| 171 |
-
.vscode
|
| 172 |
-
|
| 173 |
-
# Remove macos ds store
|
| 174 |
# Macos generated files
|
| 175 |
-
.DS_Store
|
| 176 |
-
|
| 177 |
-
# Remove vscode settings
|
| 178 |
-
.vscode
|
| 179 |
-
|
| 180 |
-
# Remove macos ds store
|
| 181 |
.DS_Store
|
|
|
|
| 167 |
# Remove test ouptuts
|
| 168 |
output.*
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
# Macos generated files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
.DS_Store
|
app/app.py
CHANGED
|
@@ -3,17 +3,107 @@ from transformers import pipeline
|
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
from travel_resolver.libs.nlp.ner.models import BiLSTM_NER, LSTM_NER, CamemBERT_NER
|
| 6 |
-
|
|
|
|
| 7 |
from travel_resolver.libs.nlp.ner.data_processing import process_sentence
|
| 8 |
from travel_resolver.libs.pathfinder.CSVTravelGraph import CSVTravelGraph
|
| 9 |
from travel_resolver.libs.pathfinder.graph import Graph
|
| 10 |
-
import
|
| 11 |
|
| 12 |
transcriber = pipeline(
|
| 13 |
"automatic-speech-recognition", model="openai/whisper-base", device="cpu"
|
| 14 |
)
|
| 15 |
|
| 16 |
-
models = {"LSTM":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def transcribe(audio):
|
|
@@ -81,162 +171,151 @@ def getStationsByCityName(city: str):
|
|
| 81 |
return stations
|
| 82 |
|
| 83 |
|
| 84 |
-
def
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
dep_idx = entities.index(1)
|
| 89 |
-
arr_idx = entities.index(2)
|
| 90 |
|
| 91 |
-
return
|
| 92 |
|
| 93 |
|
| 94 |
-
def
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
dep, arr = getDepartureAndArrivalFromText(promptAudio, "CamemBERT")
|
| 100 |
-
|
| 101 |
-
return (
|
| 102 |
-
gr.update(visible=True),
|
| 103 |
-
gr.update(visible=False),
|
| 104 |
-
gr.update(value=promptAudio),
|
| 105 |
-
gr.update(value=dep),
|
| 106 |
-
gr.update(value=arr),
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
|
| 110 |
-
def handle_file(file):
|
| 111 |
-
loading_screen.update(visible=True)
|
| 112 |
dep = None
|
| 113 |
arr = None
|
| 114 |
-
if file is not None:
|
| 115 |
-
with open(file.name, "r") as f:
|
| 116 |
-
file_content = f.read()
|
| 117 |
-
row = file_content.split("\n")
|
| 118 |
-
if len(row) > 1:
|
| 119 |
-
return
|
| 120 |
-
else:
|
| 121 |
-
dep, arr = getDepartureAndArrivalFromText(file_content, "CamemBERT")
|
| 122 |
-
else:
|
| 123 |
-
file_content = "Aucun fichier uploadΓ©."
|
| 124 |
-
|
| 125 |
-
loading_screen.update(visible=False)
|
| 126 |
-
return (
|
| 127 |
-
gr.update(visible=True),
|
| 128 |
-
gr.update(visible=False),
|
| 129 |
-
gr.update(value=file_content),
|
| 130 |
-
gr.update(value=dep),
|
| 131 |
-
gr.update(value=arr),
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def handle_back():
|
| 136 |
-
audio.clear()
|
| 137 |
-
file.clear()
|
| 138 |
-
return (gr.update(visible=False), gr.update(visible=True))
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
def handleCityChange(city):
|
| 142 |
-
stations = getStationsByCityName(city)
|
| 143 |
-
return gr.update(choices=stations, value=stations[0], interactive=True)
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
def handleStationChange(departureStation, destinationStation):
|
| 147 |
-
if departureStation and destinationStation:
|
| 148 |
-
dijkstraPath, dijkstraCost = getDijkstraResult(
|
| 149 |
-
departureStation, destinationStation
|
| 150 |
-
)
|
| 151 |
-
dijkstraPathFormatted = "\n".join(
|
| 152 |
-
[f"{i + 1}. {elem}" for i, elem in enumerate(dijkstraPath)]
|
| 153 |
-
)
|
| 154 |
-
AStarPath, AStarCost = getAStarResult(departureStation, destinationStation)
|
| 155 |
-
AStarPathFormatted = "\n".join(
|
| 156 |
-
[f"{i + 1}. {elem}" for i, elem in enumerate(AStarPath)]
|
| 157 |
-
)
|
| 158 |
-
return (
|
| 159 |
-
gr.update(value=dijkstraCost),
|
| 160 |
-
gr.update(value=dijkstraPathFormatted, lines=len(dijkstraPath)),
|
| 161 |
-
gr.update(value=AStarCost),
|
| 162 |
-
gr.update(value=AStarPathFormatted, lines=len(AStarPath)),
|
| 163 |
-
)
|
| 164 |
-
return (
|
| 165 |
-
gr.HTML("<p>Aucun prompt renseignΓ©</p>"),
|
| 166 |
-
gr.update(value=""),
|
| 167 |
-
gr.HTML("<p>Aucun prompt renseignΓ©</p>"),
|
| 168 |
-
gr.update(value=""),
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
with gr.Blocks(css="#back-button {width: fit-content}") as demo:
|
| 173 |
-
with gr.Row(visible=False) as loading_screen:
|
| 174 |
-
gr.Text("Chargement ...", elem_id="loading")
|
| 175 |
-
with gr.Column() as promptChooser:
|
| 176 |
-
with gr.Row():
|
| 177 |
-
audio = gr.Audio(label="Fichier audio")
|
| 178 |
-
file = gr.File(
|
| 179 |
-
label="Fichier texte", file_types=["text"], file_count="single"
|
| 180 |
-
)
|
| 181 |
-
with gr.Column(visible=False) as content:
|
| 182 |
-
backButton = gr.Button("β Back", elem_id="back-button")
|
| 183 |
-
with gr.Row():
|
| 184 |
-
with gr.Column(scale=1, min_width=300) as parameters:
|
| 185 |
-
prompt = gr.Textbox(label="Prompt")
|
| 186 |
-
departureCity = gr.Textbox(label="Ville de dΓ©part")
|
| 187 |
-
destinationCity = gr.Textbox(label="Ville de de destination")
|
| 188 |
-
with gr.Column(scale=2, min_width=300) as result:
|
| 189 |
with gr.Row():
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
if __name__ == "__main__":
|
| 242 |
demo.launch()
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
from travel_resolver.libs.nlp.ner.models import BiLSTM_NER, LSTM_NER, CamemBERT_NER
|
| 6 |
+
|
| 7 |
+
# import torch
|
| 8 |
from travel_resolver.libs.nlp.ner.data_processing import process_sentence
|
| 9 |
from travel_resolver.libs.pathfinder.CSVTravelGraph import CSVTravelGraph
|
| 10 |
from travel_resolver.libs.pathfinder.graph import Graph
|
| 11 |
+
import time
|
| 12 |
|
| 13 |
transcriber = pipeline(
|
| 14 |
"automatic-speech-recognition", model="openai/whisper-base", device="cpu"
|
| 15 |
)
|
| 16 |
|
| 17 |
+
models = {"LSTM": LSTM_NER(), "BiLSTM": BiLSTM_NER(), "CamemBERT": CamemBERT_NER()}
|
| 18 |
+
|
| 19 |
+
entities_label_mapping = {1: "LOC-DEP", 2: "LOC-ARR"}
|
| 20 |
+
|
| 21 |
+
with gr.Blocks(css="#back-button {width: fit-content}") as demo:
|
| 22 |
+
with gr.Column() as promptChooser:
|
| 23 |
+
with gr.Row():
|
| 24 |
+
audio = gr.Audio(label="Fichier audio")
|
| 25 |
+
file = gr.File(
|
| 26 |
+
label="Fichier texte", file_types=["text"], file_count="single"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
model = gr.Dropdown(
|
| 30 |
+
label="Modèle NER", choices=models.keys(), value="CamemBERT"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
@gr.render(inputs=[audio, file, model], triggers=[model.change])
|
| 34 |
+
def handle_model_change(audio, file, model):
|
| 35 |
+
if audio:
|
| 36 |
+
render_tabs([transcribe(audio)], model, gr.Progress())
|
| 37 |
+
elif file:
|
| 38 |
+
with open(file.name, "r") as f:
|
| 39 |
+
sentences = f.read().split("\n")
|
| 40 |
+
render_tabs(sentences, model, gr.Progress())
|
| 41 |
+
|
| 42 |
+
@gr.render(inputs=[audio, model], triggers=[audio.change])
|
| 43 |
+
def handle_audio(audio, model, progress=gr.Progress()):
|
| 44 |
+
progress(0, "Analyzing audio...")
|
| 45 |
+
promptAudio = transcribe(audio)
|
| 46 |
+
|
| 47 |
+
time.sleep(1)
|
| 48 |
+
|
| 49 |
+
render_tabs([promptAudio], model, progress)
|
| 50 |
+
|
| 51 |
+
@gr.render(
|
| 52 |
+
inputs=[file, model],
|
| 53 |
+
triggers=[file.upload],
|
| 54 |
+
)
|
| 55 |
+
def handle_file(file, model, progress=gr.Progress()):
|
| 56 |
+
progress(0, desc="Analyzing file...")
|
| 57 |
+
time.sleep(1)
|
| 58 |
+
if file is not None:
|
| 59 |
+
with open(file.name, "r") as f:
|
| 60 |
+
progress(0.33, desc="Reading file...")
|
| 61 |
+
file_content = f.read()
|
| 62 |
+
rows = file_content.split("\n")
|
| 63 |
+
sentences = [row for row in rows if row]
|
| 64 |
+
render_tabs(sentences, model, progress)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def handle_back():
|
| 68 |
+
audio.clear()
|
| 69 |
+
file.clear()
|
| 70 |
+
return (gr.update(visible=False), gr.update(visible=True))
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def handleCityChange(city):
|
| 74 |
+
stations = getStationsByCityName(city)
|
| 75 |
+
return gr.update(choices=stations, value=stations[0], interactive=True)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def handleCityChange(city):
|
| 79 |
+
stations = getStationsByCityName(city)
|
| 80 |
+
return gr.update(choices=stations, value=stations[0], interactive=True)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def formatPath(path):
|
| 84 |
+
return "\n".join([f"{i + 1}. {elem}" for i, elem in enumerate(path)])
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def handleStationChange(departureStation, destinationStation):
|
| 88 |
+
if departureStation and destinationStation:
|
| 89 |
+
dijkstraPath, dijkstraCost = getDijkstraResult(
|
| 90 |
+
departureStation, destinationStation
|
| 91 |
+
)
|
| 92 |
+
dijkstraPathFormatted = formatPath(dijkstraPath)
|
| 93 |
+
AStarPath, AStarCost = getAStarResult(departureStation, destinationStation)
|
| 94 |
+
AStarPathFormatted = formatPath(AStarPath)
|
| 95 |
+
return (
|
| 96 |
+
gr.update(value=dijkstraCost),
|
| 97 |
+
gr.update(value=dijkstraPathFormatted, lines=len(dijkstraPath)),
|
| 98 |
+
gr.update(value=AStarCost),
|
| 99 |
+
gr.update(value=AStarPathFormatted, lines=len(AStarPath)),
|
| 100 |
+
)
|
| 101 |
+
return (
|
| 102 |
+
gr.HTML("<p>Aucun prompt renseignΓ©</p>"),
|
| 103 |
+
gr.update(value=""),
|
| 104 |
+
gr.HTML("<p>Aucun prompt renseignΓ©</p>"),
|
| 105 |
+
gr.update(value=""),
|
| 106 |
+
)
|
| 107 |
|
| 108 |
|
| 109 |
def transcribe(audio):
|
|
|
|
| 171 |
return stations
|
| 172 |
|
| 173 |
|
| 174 |
+
def getEntitiesPositions(text, entity):
|
| 175 |
+
start_idx = text.find(entity)
|
| 176 |
+
end_idx = start_idx + len(entity)
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
return start_idx, end_idx
|
| 179 |
|
| 180 |
|
| 181 |
+
def getDepartureAndArrivalFromText(text: str, model: str):
|
| 182 |
+
entities = models[model].get_entities(text)
|
| 183 |
+
if not isinstance(entities, list):
|
| 184 |
+
entities = entities.tolist()
|
| 185 |
+
tokenized_sentence = process_sentence(text, return_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
|
|
|
|
|
|
| 187 |
dep = None
|
| 188 |
arr = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
if 1 in entities:
|
| 191 |
+
dep_idx = entities.index(1)
|
| 192 |
+
dep = tokenized_sentence[dep_idx]
|
| 193 |
+
start, end = getEntitiesPositions(text, dep)
|
| 194 |
+
dep = {
|
| 195 |
+
"entity": entities_label_mapping[1],
|
| 196 |
+
"word": dep,
|
| 197 |
+
"start": start,
|
| 198 |
+
"end": end,
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
if 2 in entities:
|
| 202 |
+
arr_idx = entities.index(2)
|
| 203 |
+
arr = tokenized_sentence[arr_idx]
|
| 204 |
+
start, end = getEntitiesPositions(text, arr)
|
| 205 |
+
arr = {
|
| 206 |
+
"entity": entities_label_mapping[2],
|
| 207 |
+
"word": arr,
|
| 208 |
+
"start": start,
|
| 209 |
+
"end": end,
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
return dep, arr
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def render_tabs(sentences: list[str], model: str, progress_bar: gr.Progress):
|
| 216 |
+
idx = 0
|
| 217 |
+
with gr.Tabs() as tabs:
|
| 218 |
+
for sentence in progress_bar.tqdm(sentences, desc="Processing sentences..."):
|
| 219 |
+
with gr.Tab(f"Sentence {idx}"):
|
| 220 |
+
dep, arr = getDepartureAndArrivalFromText(sentence, model)
|
| 221 |
+
entities = []
|
| 222 |
+
for entity in [dep, arr]:
|
| 223 |
+
if entity:
|
| 224 |
+
entities.append(entity)
|
| 225 |
+
|
| 226 |
+
# Format the classified entities
|
| 227 |
+
departureCityValue = dep["word"].upper() if dep else ""
|
| 228 |
+
arrivalCityValue = arr["word"].upper() if arr else ""
|
| 229 |
+
|
| 230 |
+
# Get the available stations
|
| 231 |
+
departureStations = getStationsByCityName(departureCityValue)
|
| 232 |
+
departureStationValue = (
|
| 233 |
+
departureStations[0] if departureStations else ""
|
| 234 |
+
)
|
| 235 |
+
arrivalStations = getStationsByCityName(arrivalCityValue)
|
| 236 |
+
arrivalStationValue = arrivalStations[0] if arrivalStations else ""
|
| 237 |
+
|
| 238 |
+
dijkstraPathValues = []
|
| 239 |
+
AStarPathValues = []
|
| 240 |
+
timeDijkstraValue = "<p>Aucun prompt renseignΓ©</p>"
|
| 241 |
+
timeAStarValue = "<p>Aucun prompt renseignΓ©</p>"
|
| 242 |
+
|
| 243 |
+
# Get the paths and time for the two algorithms
|
| 244 |
+
if departureStationValue and arrivalStationValue:
|
| 245 |
+
dijkstraPathValues, timeDijkstraValue = getDijkstraResult(
|
| 246 |
+
departureStationValue, arrivalStationValue
|
| 247 |
+
)
|
| 248 |
+
AStarPathValues, timeAStarValue = getAStarResult(
|
| 249 |
+
departureStationValue, arrivalStationValue
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
dijkstraPathFormatted = formatPath(dijkstraPathValues)
|
| 253 |
+
AStarPathFormatted = formatPath(AStarPathValues)
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
with gr.Row():
|
| 256 |
+
with gr.Column(scale=1, min_width=300):
|
| 257 |
+
gr.HighlightedText(
|
| 258 |
+
value={"text": sentence, "entities": entities}
|
| 259 |
+
)
|
| 260 |
+
departureCity = gr.Textbox(
|
| 261 |
+
label="Ville de dΓ©part",
|
| 262 |
+
value=departureCityValue,
|
| 263 |
+
)
|
| 264 |
+
arrivalCity = gr.Textbox(
|
| 265 |
+
label="Ville d'arrivΓ©e",
|
| 266 |
+
value=arrivalCityValue,
|
| 267 |
+
)
|
| 268 |
+
with gr.Column(scale=2, min_width=300):
|
| 269 |
+
with gr.Row():
|
| 270 |
+
departureStation = gr.Dropdown(
|
| 271 |
+
label="Gare de dΓ©part",
|
| 272 |
+
choices=departureStations,
|
| 273 |
+
value=departureStationValue,
|
| 274 |
+
)
|
| 275 |
+
arrivalStation = gr.Dropdown(
|
| 276 |
+
label="Gare d'arrivΓ©e",
|
| 277 |
+
choices=arrivalStations,
|
| 278 |
+
value=arrivalStationValue,
|
| 279 |
+
)
|
| 280 |
+
with gr.Tab("Dijkstra"):
|
| 281 |
+
timeDijkstra = gr.HTML(value=timeDijkstraValue)
|
| 282 |
+
dijkstraPath = gr.Textbox(
|
| 283 |
+
label="Chemin empruntΓ©",
|
| 284 |
+
value=dijkstraPathFormatted,
|
| 285 |
+
lines=len(dijkstraPathValues),
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
with gr.Tab("AStar"):
|
| 289 |
+
timeAStar = gr.HTML(value=timeAStarValue)
|
| 290 |
+
AstarPath = gr.Textbox(
|
| 291 |
+
label="Chemin empruntΓ©",
|
| 292 |
+
value=AStarPathFormatted,
|
| 293 |
+
lines=len(AStarPathValues),
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
departureCity.change(
|
| 297 |
+
handleCityChange,
|
| 298 |
+
inputs=[departureCity],
|
| 299 |
+
outputs=[departureStation],
|
| 300 |
+
)
|
| 301 |
+
arrivalCity.change(
|
| 302 |
+
handleCityChange,
|
| 303 |
+
inputs=[arrivalCity],
|
| 304 |
+
outputs=[arrivalStation],
|
| 305 |
+
)
|
| 306 |
+
departureStation.change(
|
| 307 |
+
handleStationChange,
|
| 308 |
+
inputs=[departureStation, arrivalStation],
|
| 309 |
+
outputs=[timeDijkstra, dijkstraPath, timeAStar, AstarPath],
|
| 310 |
+
)
|
| 311 |
+
arrivalStation.change(
|
| 312 |
+
handleStationChange,
|
| 313 |
+
inputs=[departureStation, arrivalStation],
|
| 314 |
+
outputs=[timeDijkstra, dijkstraPath, timeAStar, AstarPath],
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
idx += 1
|
| 318 |
+
|
| 319 |
|
| 320 |
if __name__ == "__main__":
|
| 321 |
demo.launch()
|
app/travel_resolver/libs/nlp/ner/models.py
CHANGED
|
@@ -11,6 +11,8 @@ from .data_processing import (
|
|
| 11 |
)
|
| 12 |
from .metrics import masked_loss, masked_accuracy, entity_accuracy
|
| 13 |
import stanza
|
|
|
|
|
|
|
| 14 |
|
| 15 |
nlp = stanza.Pipeline("fr", processors="tokenize,pos")
|
| 16 |
|
|
@@ -37,18 +39,14 @@ class NERModel(ABC):
|
|
| 37 |
|
| 38 |
class LSTM_NER(NERModel):
|
| 39 |
def __init__(self):
|
| 40 |
-
self.
|
| 41 |
-
self.file_path,
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
custom_objects={
|
| 46 |
-
"masked_loss": masked_loss,
|
| 47 |
-
"masked_accuracy": masked_accuracy,
|
| 48 |
-
"entity_accuracy": entity_accuracy,
|
| 49 |
-
"log_softmax_v2": tf.nn.log_softmax,
|
| 50 |
-
},
|
| 51 |
)
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def encode_sentence(self, sentence: str):
|
| 54 |
processed_sentence = process_sentence(
|
|
@@ -75,18 +73,11 @@ class LSTM_NER(NERModel):
|
|
| 75 |
|
| 76 |
class BiLSTM_NER(NERModel):
|
| 77 |
def __init__(self):
|
| 78 |
-
self.
|
| 79 |
-
self.file_path, "
|
| 80 |
-
)
|
| 81 |
-
self.model = tf.keras.models.load_model(
|
| 82 |
-
self.model_path,
|
| 83 |
-
custom_objects={
|
| 84 |
-
"masked_loss": masked_loss,
|
| 85 |
-
"masked_accuracy": masked_accuracy,
|
| 86 |
-
"entity_accuracy": entity_accuracy,
|
| 87 |
-
"log_softmax_v2": tf.nn.log_softmax,
|
| 88 |
-
},
|
| 89 |
)
|
|
|
|
|
|
|
| 90 |
|
| 91 |
def encode_sentence(self, sentence: str):
|
| 92 |
processed_sentence = process_sentence(
|
|
@@ -167,8 +158,6 @@ class CamemBERT_NER(NERModel):
|
|
| 167 |
if current_word is not None:
|
| 168 |
sentence_labels.append(word_label)
|
| 169 |
|
| 170 |
-
print(i)
|
| 171 |
-
print(token_idx)
|
| 172 |
# Reset for the new word
|
| 173 |
current_word = word_idx
|
| 174 |
word_label = predictions[i][token_idx]
|
|
|
|
| 11 |
)
|
| 12 |
from .metrics import masked_loss, masked_accuracy, entity_accuracy
|
| 13 |
import stanza
|
| 14 |
+
from .models_definitions.bilstm.architecture import BiLSTM
|
| 15 |
+
from .models_definitions.lstm_with_pos.architecture import LSTM
|
| 16 |
|
| 17 |
nlp = stanza.Pipeline("fr", processors="tokenize,pos")
|
| 18 |
|
|
|
|
| 39 |
|
| 40 |
class LSTM_NER(NERModel):
|
| 41 |
def __init__(self):
|
| 42 |
+
self.model_weights_path = os.path.join(
|
| 43 |
+
self.file_path,
|
| 44 |
+
"models_definitions",
|
| 45 |
+
"lstm_with_pos",
|
| 46 |
+
"lstm_with_pos.weights.h5",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
+
self.model = LSTM(self.vocab, 3, self.pos_tags)
|
| 49 |
+
self.model.load_from_weights(self.model_weights_path)
|
| 50 |
|
| 51 |
def encode_sentence(self, sentence: str):
|
| 52 |
processed_sentence = process_sentence(
|
|
|
|
| 73 |
|
| 74 |
class BiLSTM_NER(NERModel):
|
| 75 |
def __init__(self):
|
| 76 |
+
self.model_weights_path = os.path.join(
|
| 77 |
+
self.file_path, "models_definitions", "bilstm", "bilstm.weights.h5"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
+
self.model = BiLSTM(self.vocab, 3)
|
| 80 |
+
self.model.load_from_weights(self.model_weights_path)
|
| 81 |
|
| 82 |
def encode_sentence(self, sentence: str):
|
| 83 |
processed_sentence = process_sentence(
|
|
|
|
| 158 |
if current_word is not None:
|
| 159 |
sentence_labels.append(word_label)
|
| 160 |
|
|
|
|
|
|
|
| 161 |
# Reset for the new word
|
| 162 |
current_word = word_idx
|
| 163 |
word_label = predictions[i][token_idx]
|
app/travel_resolver/libs/nlp/ner/models_definitions/__init__.py
ADDED
|
File without changes
|
app/travel_resolver/libs/nlp/ner/models_definitions/bilstm/__init__.py
ADDED
|
File without changes
|
app/travel_resolver/libs/nlp/ner/models_definitions/bilstm/architecture.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class BiLSTM:
|
| 5 |
+
def __init__(self, vocab, nb_labels, emb_dim=100):
|
| 6 |
+
self.model = tf.keras.models.Sequential(
|
| 7 |
+
layers=[
|
| 8 |
+
tf.keras.layers.Embedding(len(vocab) + 1, emb_dim, mask_zero=True),
|
| 9 |
+
tf.keras.layers.Bidirectional(
|
| 10 |
+
tf.keras.layers.LSTM(emb_dim, return_sequences=True)
|
| 11 |
+
),
|
| 12 |
+
tf.keras.layers.Dropout(0.3),
|
| 13 |
+
tf.keras.layers.Dense(nb_labels, activation=tf.nn.log_softmax),
|
| 14 |
+
]
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def load_from_weights(self, weights_path):
|
| 18 |
+
self.model.load_weights(weights_path)
|
| 19 |
+
|
| 20 |
+
def predict(self, x, verbose=0):
|
| 21 |
+
return self.model.predict(x, verbose=verbose)
|
app/travel_resolver/libs/nlp/ner/models_definitions/bilstm/bilstm.weights.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c4457e1c5249bef9062556a0f371f75bbe41f1c903ca485de55899d3a99c453
|
| 3 |
+
size 7964368
|
app/travel_resolver/libs/nlp/ner/{models β models_definitions}/bilstm/model.keras
RENAMED
|
File without changes
|
app/travel_resolver/libs/nlp/ner/{models β models_definitions}/bilstm/tf_version.txt
RENAMED
|
File without changes
|
app/travel_resolver/libs/nlp/ner/models_definitions/lstm_with_pos/__init__.py
ADDED
|
File without changes
|
app/travel_resolver/libs/nlp/ner/models_definitions/lstm_with_pos/architecture.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LSTM:
|
| 5 |
+
def __init__(self, vocab, nb_labels: int, pos_tags: list, emb_dim=100, emb_size=32):
|
| 6 |
+
word_input = tf.keras.layers.Input(shape=(emb_dim,), name="word_input")
|
| 7 |
+
pos_input = tf.keras.layers.Input(shape=(emb_dim,), name="pos_input")
|
| 8 |
+
|
| 9 |
+
word_embedding = tf.keras.layers.Embedding(
|
| 10 |
+
len(vocab), emb_size, name="word_embedding"
|
| 11 |
+
)(word_input)
|
| 12 |
+
|
| 13 |
+
pos_embedding = tf.keras.layers.Embedding(
|
| 14 |
+
len(pos_tags),
|
| 15 |
+
emb_size,
|
| 16 |
+
name="pos_embedding",
|
| 17 |
+
)(pos_input)
|
| 18 |
+
|
| 19 |
+
concatenated = tf.keras.layers.Concatenate()([word_embedding, pos_embedding])
|
| 20 |
+
|
| 21 |
+
masked_cat = tf.keras.layers.Masking(mask_value=0)(concatenated)
|
| 22 |
+
|
| 23 |
+
lstm_layer_with_pos = tf.keras.layers.LSTM(
|
| 24 |
+
emb_size, return_sequences=True, name="lstm_layer"
|
| 25 |
+
)(masked_cat)
|
| 26 |
+
|
| 27 |
+
dropout = tf.keras.layers.Dropout(0.2)(lstm_layer_with_pos)
|
| 28 |
+
|
| 29 |
+
output = tf.keras.layers.Dense(nb_labels, activation=tf.nn.log_softmax)(dropout)
|
| 30 |
+
|
| 31 |
+
self.model = tf.keras.Model(inputs=[word_input, pos_input], outputs=output)
|
| 32 |
+
|
| 33 |
+
def load_from_weights(self, weights_path):
|
| 34 |
+
self.model.load_weights(weights_path)
|
| 35 |
+
|
| 36 |
+
def predict(self, x, verbose=0):
|
| 37 |
+
return self.model.predict(x, verbose=verbose)
|
app/travel_resolver/libs/nlp/ner/models_definitions/lstm_with_pos/lstm_with_pos.weights.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb5a1a558c9156caa7dc56a64576be9331b13991bc8c87886ae69546fdeb80ca
|
| 3 |
+
size 2111328
|
app/travel_resolver/libs/nlp/ner/{models β models_definitions}/lstm_with_pos/model.keras
RENAMED
|
File without changes
|
app/travel_resolver/libs/nlp/ner/{models β models_definitions}/lstm_with_pos/tf_version.txt
RENAMED
|
File without changes
|
app/travel_resolver/tests/data_processing_test.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import unittest
|
| 2 |
from pathlib import Path
|
| 3 |
-
from travel_resolver.libs.nlp.data_processing import (
|
| 4 |
get_tagged_content,
|
| 5 |
convert_tagged_sentence_to_bio,
|
| 6 |
from_tagged_file_to_bio_file,
|
|
|
|
| 1 |
import unittest
|
| 2 |
from pathlib import Path
|
| 3 |
+
from app.travel_resolver.libs.nlp.ner.data_processing import (
|
| 4 |
get_tagged_content,
|
| 5 |
convert_tagged_sentence_to_bio,
|
| 6 |
from_tagged_file_to_bio_file,
|
test.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.travel_resolver.libs.nlp.ner.models import LSTM_NER, BiLSTM_NER, CamemBERT_NER
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
|
| 4 |
+
print(tf.__version__)
|
| 5 |
+
|
| 6 |
+
ner_model = LSTM_NER()
|
| 7 |
+
|
| 8 |
+
sentence = "Je voudrais voyager de Nice Γ Clermont Ferrand."
|
| 9 |
+
|
| 10 |
+
print(ner_model.get_entities(sentence))
|
test.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Je veux partir de Montpellier Γ Clermont-Ferrand.
|
test2.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Je suis Γ Paris. Je veux prendre le train Γ Montpellier.
|
| 2 |
+
Je veux prendre le train de Lyon Γ Marseille.
|