Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -39,6 +39,7 @@ def single_classification(text, event_model, threshold):
|
|
| 39 |
return res["event"], res["score"]
|
| 40 |
|
| 41 |
def load_and_classify_csv(file, text_field, event_model, threshold):
|
|
|
|
| 42 |
filepath = file.name
|
| 43 |
if ".csv" in filepath:
|
| 44 |
df = pd.read_csv(filepath)
|
|
@@ -66,7 +67,7 @@ def load_and_classify_csv(file, text_field, event_model, threshold):
|
|
| 66 |
return flood_related, fire_related, not_related, model_confidence, len(df[text_field].to_list()), df, gr.update(interactive=True), gr.update(interactive=True)
|
| 67 |
|
| 68 |
def load_and_classify_csv_dataframe(file, text_field, event_model, threshold):
|
| 69 |
-
|
| 70 |
filepath = file.name
|
| 71 |
if ".csv" in filepath:
|
| 72 |
df = pd.read_csv(filepath)
|
|
@@ -98,6 +99,7 @@ def load_and_classify_csv_dataframe(file, text_field, event_model, threshold):
|
|
| 98 |
|
| 99 |
|
| 100 |
def calculate_accuracy(flood_selections, fire_selections, none_selections, num_posts, text_field, data_df):
|
|
|
|
| 101 |
posts = data_df[text_field].to_list()
|
| 102 |
selections = flood_selections + fire_selections + none_selections
|
| 103 |
eval = []
|
|
@@ -284,7 +286,12 @@ with gr.Blocks(fill_width=True) as demo:
|
|
| 284 |
with gr.Group():
|
| 285 |
with gr.Row():
|
| 286 |
with gr.Column(scale=7):
|
| 287 |
-
qa_df = gr.DataFrame(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
with gr.Column(scale=3):
|
| 289 |
qa_tweet_embed = gr.HTML("""<div id="tweet-container2"></div>""")
|
| 290 |
|
|
|
|
| 39 |
return res["event"], res["score"]
|
| 40 |
|
| 41 |
def load_and_classify_csv(file, text_field, event_model, threshold):
|
| 42 |
+
text_field = text_field.strip()
|
| 43 |
filepath = file.name
|
| 44 |
if ".csv" in filepath:
|
| 45 |
df = pd.read_csv(filepath)
|
|
|
|
| 67 |
return flood_related, fire_related, not_related, model_confidence, len(df[text_field].to_list()), df, gr.update(interactive=True), gr.update(interactive=True)
|
| 68 |
|
| 69 |
def load_and_classify_csv_dataframe(file, text_field, event_model, threshold):
|
| 70 |
+
text_field = text_field.strip()
|
| 71 |
filepath = file.name
|
| 72 |
if ".csv" in filepath:
|
| 73 |
df = pd.read_csv(filepath)
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
def calculate_accuracy(flood_selections, fire_selections, none_selections, num_posts, text_field, data_df):
|
| 102 |
+
text_field = text_field.strip()
|
| 103 |
posts = data_df[text_field].to_list()
|
| 104 |
selections = flood_selections + fire_selections + none_selections
|
| 105 |
eval = []
|
|
|
|
| 286 |
with gr.Group():
|
| 287 |
with gr.Row():
|
| 288 |
with gr.Column(scale=7):
|
| 289 |
+
qa_df = gr.DataFrame(wrap=True,
|
| 290 |
+
show_fullscreen_button=True,
|
| 291 |
+
show_copy_button=True,
|
| 292 |
+
show_search="filter",
|
| 293 |
+
max_height=1000,
|
| 294 |
+
column_widths=["10%","70%","20%"])
|
| 295 |
with gr.Column(scale=3):
|
| 296 |
qa_tweet_embed = gr.HTML("""<div id="tweet-container2"></div>""")
|
| 297 |
|