Spaces:
Runtime error
Runtime error
Upload main.py
Browse files
main.py
CHANGED
|
@@ -7,19 +7,22 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
| 7 |
|
| 8 |
model_name = "facebook/blenderbot-1B-distill"
|
| 9 |
|
| 10 |
-
# https://huggingface.co/models?sort=trending&search=facebook%
|
| 11 |
# facebook/blenderbot-3B
|
| 12 |
# facebook/blenderbot-1B-distill
|
| 13 |
# facebook/blenderbot-400M-distill
|
| 14 |
# facebook/blenderbot-90M
|
| 15 |
# facebook/blenderbot_small-90M
|
| 16 |
|
|
|
|
|
|
|
| 17 |
app = FastAPI()
|
| 18 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
|
| 21 |
class req(BaseModel):
|
| 22 |
prompt: str
|
|
|
|
| 23 |
|
| 24 |
@app.get("/")
|
| 25 |
def read_root():
|
|
@@ -29,14 +32,16 @@ def read_root():
|
|
| 29 |
def read_root(data: req):
|
| 30 |
print("Prompt:", data.prompt)
|
| 31 |
|
|
|
|
|
|
|
| 32 |
input_text = data.prompt
|
| 33 |
-
|
| 34 |
# Tokenize the input text
|
| 35 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 36 |
|
| 37 |
# Generate output using the model
|
| 38 |
output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2)
|
| 39 |
-
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 40 |
|
| 41 |
answer_data = { "answer": generated_text }
|
| 42 |
print("Answer:", generated_text)
|
|
|
|
| 7 |
|
| 8 |
model_name = "facebook/blenderbot-1B-distill"
|
| 9 |
|
| 10 |
+
# https://huggingface.co/models?sort=trending&search=facebook%2Fblenderbot
|
| 11 |
# facebook/blenderbot-3B
|
| 12 |
# facebook/blenderbot-1B-distill
|
| 13 |
# facebook/blenderbot-400M-distill
|
| 14 |
# facebook/blenderbot-90M
|
| 15 |
# facebook/blenderbot_small-90M
|
| 16 |
|
| 17 |
+
# https://www.youtube.com/watch?v=irjYqV6EebU
|
| 18 |
+
|
| 19 |
app = FastAPI()
|
| 20 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 22 |
|
| 23 |
class req(BaseModel):
|
| 24 |
prompt: str
|
| 25 |
+
history: list
|
| 26 |
|
| 27 |
@app.get("/")
|
| 28 |
def read_root():
|
|
|
|
| 32 |
def read_root(data: req):
|
| 33 |
print("Prompt:", data.prompt)
|
| 34 |
|
| 35 |
+
history_string = "\n".join(data.history)
|
| 36 |
+
|
| 37 |
input_text = data.prompt
|
| 38 |
+
|
| 39 |
# Tokenize the input text
|
| 40 |
+
input_ids = tokenizer.encode(history_string, input_text, return_tensors="pt")
|
| 41 |
|
| 42 |
# Generate output using the model
|
| 43 |
output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2)
|
| 44 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
| 45 |
|
| 46 |
answer_data = { "answer": generated_text }
|
| 47 |
print("Answer:", generated_text)
|