Update app.py
Browse files
app.py
CHANGED
|
@@ -21,34 +21,43 @@ class_names = [
|
|
| 21 |
]
|
| 22 |
|
| 23 |
examples = [
|
| 24 |
-
['./aeroplane.png'],
|
| 25 |
-
['./
|
|
|
|
|
|
|
|
|
|
| 26 |
]
|
| 27 |
|
| 28 |
IMG_SIZE = 72
|
| 29 |
|
| 30 |
-
def
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
predictions = student_model.predict(np.expand_dims((image_tensor), axis=0))
|
| 38 |
-
print(predictions)
|
| 39 |
predictions = np.squeeze(predictions)
|
| 40 |
-
|
| 41 |
-
predictions = np.argmax(predictions) # , axis=2
|
| 42 |
-
print(predictions)
|
| 43 |
predicted_label = class_names[predictions.item()]
|
| 44 |
-
print(predictions.item())
|
| 45 |
-
print(predicted_label)
|
| 46 |
return str(predicted_label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
|
| 49 |
-
output = [gr.outputs.Label()]
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
gr_interface = gr.Interface(
|
| 54 |
infer,
|
|
|
|
| 21 |
]
|
| 22 |
|
| 23 |
examples = [
|
| 24 |
+
['./aeroplane.png'],
|
| 25 |
+
['./dog.png'],
|
| 26 |
+
['./horse.png'],
|
| 27 |
+
['./ship.png'],
|
| 28 |
+
['./truck.png']
|
| 29 |
]
|
| 30 |
|
| 31 |
IMG_SIZE = 72
|
| 32 |
|
| 33 |
+
def teacher_model_output(image_tensor):
|
| 34 |
+
predictions = teacher_model.predict(np.expand_dims((image_tensor), axis=0))
|
| 35 |
+
predictions = np.squeeze(predictions)
|
| 36 |
+
predictions = np.argmax(predictions)
|
| 37 |
+
predicted_label = class_names[predictions.item()]
|
| 38 |
+
return str(predicted_label)
|
| 39 |
+
|
| 40 |
+
def student_model_output(image_tensor):
|
| 41 |
predictions = student_model.predict(np.expand_dims((image_tensor), axis=0))
|
|
|
|
| 42 |
predictions = np.squeeze(predictions)
|
| 43 |
+
predictions = np.argmax(predictions)
|
|
|
|
|
|
|
| 44 |
predicted_label = class_names[predictions.item()]
|
|
|
|
|
|
|
| 45 |
return str(predicted_label)
|
| 46 |
+
|
| 47 |
+
def infer(input_image):
|
| 48 |
+
image_tensor = tf.convert_to_tensor(input_image)
|
| 49 |
+
image_tensor.set_shape([None, None, 3])
|
| 50 |
+
image_tensor = tf.image.resize(image_tensor, (IMG_SIZE, IMG_SIZE))
|
| 51 |
+
return teacher_model_output(image_tensor), student_model_output(image_tensor)
|
| 52 |
|
| 53 |
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
|
| 54 |
+
output = [gr.outputs.Label(label = "Teacher Model Output"), gr.outputs.Label(label = "Student Model Output")]
|
| 55 |
+
|
| 56 |
+
title = "Image Classification using Consistency training with supervision"
|
| 57 |
+
description = "Upload an image or select from examples to classify it.<br>The allowed classes are - Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck.<br><p><b>Teacher Model Repo - </b> <br><b> Student Model Repo - </b></p>"
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
article = "<div style='text-align: center;'><a href='https://twitter.com/_Blazer_007' target='_blank'>Space by Vivek Rai</a><br><a href='https://keras.io/examples/vision/consistency_training/' target='_blank'>Keras example by Sayak Paul</a></div>"
|
| 61 |
|
| 62 |
gr_interface = gr.Interface(
|
| 63 |
infer,
|