Spaces:
Paused
Paused
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| # Initialize the Hugging Face Inference Client | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| """ | |
| Handles user input and generates a response using the Hugging Face model. | |
| """ | |
| try: | |
| # Construct the conversation context | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_msg, assistant_msg in history: | |
| if user_msg: | |
| messages.append({"role": "user", "content": user_msg}) | |
| if assistant_msg: | |
| messages.append({"role": "assistant", "content": assistant_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Generate the response | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| stream=True | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| except Exception as e: | |
| yield f"Error: {str(e)}" | |
| # Create the Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System Message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p (Nucleus Sampling)"), | |
| ] | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo.launch() |