Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +52 -23
- requirements.txt +0 -2
app.py
CHANGED
|
@@ -2,22 +2,27 @@ import streamlit as st
|
|
| 2 |
import os
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
-
from langchain.embeddings import HuggingFaceHubEmbeddings
|
| 6 |
from langchain.vectorstores import FAISS
|
| 7 |
-
from langchain.
|
| 8 |
from langchain.chains.question_answering import load_qa_chain
|
|
|
|
| 9 |
|
| 10 |
st.set_page_config(page_title='preguntaDOC')
|
| 11 |
st.header("Pregunta a tu PDF")
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
|
| 17 |
|
| 18 |
@st.cache_resource
|
| 19 |
-
def create_embeddings(pdf,
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
pdf_reader = PdfReader(pdf)
|
| 23 |
text = ""
|
|
@@ -32,29 +37,53 @@ def create_embeddings(pdf, hf_api_key):
|
|
| 32 |
chunks = text_splitter.split_text(text)
|
| 33 |
|
| 34 |
# Usar HuggingFaceHubEmbeddings en lugar de HuggingFaceEmbeddings
|
|
|
|
| 35 |
embeddings = HuggingFaceHubEmbeddings(
|
| 36 |
repo_id="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
| 37 |
-
huggingfacehub_api_token=
|
| 38 |
)
|
| 39 |
|
| 40 |
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
| 41 |
return knowledge_base
|
| 42 |
|
| 43 |
-
if pdf_obj and
|
| 44 |
-
knowledge_base = create_embeddings(pdf_obj,
|
| 45 |
-
user_question = st.text_input("Haz una pregunta sobre tu PDF:")
|
| 46 |
|
| 47 |
-
if
|
| 48 |
-
|
| 49 |
-
docs = knowledge_base.similarity_search(user_question, 3)
|
| 50 |
-
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
| 51 |
-
chain = load_qa_chain(llm, chain_type="stuff")
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
| 6 |
from langchain.vectorstores import FAISS
|
| 7 |
+
from langchain.llms import HuggingFaceHub
|
| 8 |
from langchain.chains.question_answering import load_qa_chain
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
|
| 11 |
st.set_page_config(page_title='preguntaDOC')
|
| 12 |
st.header("Pregunta a tu PDF")
|
| 13 |
|
| 14 |
+
# Campo para el token de Hugging Face (ahora requerido para los embeddings)
|
| 15 |
+
huggingface_api_token = st.text_input('Hugging Face API Token (requerido)', type='password')
|
| 16 |
|
| 17 |
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
|
| 18 |
|
| 19 |
@st.cache_resource
|
| 20 |
+
def create_embeddings(pdf, api_token):
|
| 21 |
+
if not api_token:
|
| 22 |
+
st.error("Se requiere un token de API de Hugging Face")
|
| 23 |
+
return None
|
| 24 |
+
|
| 25 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
|
| 26 |
|
| 27 |
pdf_reader = PdfReader(pdf)
|
| 28 |
text = ""
|
|
|
|
| 37 |
chunks = text_splitter.split_text(text)
|
| 38 |
|
| 39 |
# Usar HuggingFaceHubEmbeddings en lugar de HuggingFaceEmbeddings
|
| 40 |
+
# Este enfoque no requiere sentence-transformers instalado localmente
|
| 41 |
embeddings = HuggingFaceHubEmbeddings(
|
| 42 |
repo_id="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
| 43 |
+
huggingfacehub_api_token=api_token
|
| 44 |
)
|
| 45 |
|
| 46 |
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
| 47 |
return knowledge_base
|
| 48 |
|
| 49 |
+
if pdf_obj and huggingface_api_token:
|
| 50 |
+
knowledge_base = create_embeddings(pdf_obj, huggingface_api_token)
|
|
|
|
| 51 |
|
| 52 |
+
if knowledge_base:
|
| 53 |
+
user_question = st.text_input("Haz una pregunta sobre tu PDF:")
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
if user_question:
|
| 56 |
+
docs = knowledge_base.similarity_search(user_question, 3)
|
| 57 |
+
|
| 58 |
+
# Usar un modelo gratuito de Hugging Face
|
| 59 |
+
llm = HuggingFaceHub(
|
| 60 |
+
repo_id="google/flan-t5-large",
|
| 61 |
+
huggingfacehub_api_token=huggingface_api_token,
|
| 62 |
+
model_kwargs={"temperature": 0.5, "max_length": 512}
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
prompt_template = """
|
| 66 |
+
Responde a la siguiente pregunta basándote únicamente en el contexto proporcionado.
|
| 67 |
+
|
| 68 |
+
Contexto: {context}
|
| 69 |
+
|
| 70 |
+
Pregunta: {question}
|
| 71 |
+
|
| 72 |
+
Respuesta:
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
PROMPT = PromptTemplate(
|
| 76 |
+
template=prompt_template,
|
| 77 |
+
input_variables=["context", "question"]
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
chain = load_qa_chain(llm, chain_type="stuff", prompt=PROMPT)
|
| 81 |
+
|
| 82 |
+
with st.spinner("Procesando tu pregunta..."):
|
| 83 |
+
try:
|
| 84 |
+
respuesta = chain.run(input_documents=docs, question=user_question)
|
| 85 |
+
st.write(respuesta)
|
| 86 |
+
except Exception as e:
|
| 87 |
+
st.error(f"Error al procesar tu pregunta: {str(e)}")
|
| 88 |
+
elif not huggingface_api_token and pdf_obj:
|
| 89 |
+
st.warning("Por favor, ingresa tu token de API de Hugging Face para continuar.")
|
requirements.txt
CHANGED
|
@@ -9,5 +9,3 @@ accelerate==0.20.3
|
|
| 9 |
einops==0.6.1
|
| 10 |
protobuf==3.20.3
|
| 11 |
tiktoken==0.4.0
|
| 12 |
-
openai==0.28.1
|
| 13 |
-
|
|
|
|
| 9 |
einops==0.6.1
|
| 10 |
protobuf==3.20.3
|
| 11 |
tiktoken==0.4.0
|
|
|
|
|
|