Spaces:
Sleeping
Sleeping
Commit
·
56bd1e9
1
Parent(s):
bbb0e13
Comments and docstrings improvement
Browse files- api/llm.py +166 -31
api/llm.py
CHANGED
|
@@ -2,17 +2,30 @@ import os
|
|
| 2 |
from openai import OpenAI
|
| 3 |
import anthropic
|
| 4 |
from utils.errors import APIError
|
| 5 |
-
from typing import List, Dict, Generator, Optional, Tuple
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class PromptManager:
|
| 9 |
def __init__(self, prompts: Dict[str, str]):
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def add_limit(self, prompt: str) -> str:
|
| 14 |
"""
|
| 15 |
Add word limit to the prompt if specified in the environment variables.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
if self.limit:
|
| 18 |
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
|
|
@@ -21,6 +34,15 @@ class PromptManager:
|
|
| 21 |
def get_system_prompt(self, key: str) -> str:
|
| 22 |
"""
|
| 23 |
Retrieve and limit a system prompt by its key.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"""
|
| 25 |
prompt = self.prompts[key]
|
| 26 |
return self.add_limit(prompt)
|
|
@@ -30,13 +52,29 @@ class PromptManager:
|
|
| 30 |
) -> str:
|
| 31 |
"""
|
| 32 |
Create a problem requirements prompt with optional parameters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
"""
|
| 34 |
prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic}. Additional requirements: {requirements}."
|
| 35 |
return self.add_limit(prompt)
|
| 36 |
|
| 37 |
|
| 38 |
class LLMManager:
|
| 39 |
-
def __init__(self, config, prompts: Dict[str, str]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
self.config = config
|
| 41 |
self.llm_type = config.llm.type
|
| 42 |
if self.llm_type == "ANTHROPIC_API":
|
|
@@ -53,18 +91,38 @@ class LLMManager:
|
|
| 53 |
def get_text(self, messages: List[Dict[str, str]], stream: Optional[bool] = None) -> Generator[str, None, None]:
|
| 54 |
"""
|
| 55 |
Generate text from the LLM, optionally streaming the response.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
"""
|
| 57 |
if stream is None:
|
| 58 |
stream = self.streaming
|
| 59 |
try:
|
| 60 |
if self.llm_type == "OPENAI_API":
|
| 61 |
-
|
| 62 |
elif self.llm_type == "ANTHROPIC_API":
|
| 63 |
-
|
| 64 |
except Exception as e:
|
| 65 |
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
|
| 66 |
|
| 67 |
def _get_text_openai(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
if not stream:
|
| 69 |
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000)
|
| 70 |
yield response.choices[0].message.content.strip()
|
|
@@ -77,9 +135,39 @@ class LLMManager:
|
|
| 77 |
yield chunk.choices[0].delta.content
|
| 78 |
|
| 79 |
def _get_text_anthropic(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
system_message = None
|
| 84 |
consolidated_messages = []
|
| 85 |
|
|
@@ -95,39 +183,43 @@ class LLMManager:
|
|
| 95 |
else:
|
| 96 |
consolidated_messages.append(message.copy())
|
| 97 |
|
| 98 |
-
|
| 99 |
-
response = self.client.messages.create(
|
| 100 |
-
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
|
| 101 |
-
)
|
| 102 |
-
yield response.content[0].text
|
| 103 |
-
else:
|
| 104 |
-
with self.client.messages.stream(
|
| 105 |
-
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
|
| 106 |
-
) as stream:
|
| 107 |
-
yield from stream.text_stream
|
| 108 |
|
| 109 |
-
def test_llm(self, stream=False) -> bool:
|
| 110 |
"""
|
| 111 |
Test the LLM connection with or without streaming.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
"""
|
| 113 |
try:
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
],
|
| 121 |
-
stream=stream,
|
| 122 |
-
)
|
| 123 |
-
)
|
| 124 |
return True
|
| 125 |
-
except:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
return False
|
| 127 |
|
| 128 |
def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]:
|
| 129 |
"""
|
| 130 |
Initialize the bot with a system prompt and problem description.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
"""
|
| 132 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
|
| 133 |
return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}]
|
|
@@ -135,6 +227,15 @@ class LLMManager:
|
|
| 135 |
def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]:
|
| 136 |
"""
|
| 137 |
Prepare messages for generating a problem based on given requirements.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
"""
|
| 139 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
|
| 140 |
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
|
|
@@ -146,6 +247,15 @@ class LLMManager:
|
|
| 146 |
def get_problem(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> Generator[str, None, None]:
|
| 147 |
"""
|
| 148 |
Get a problem from the LLM based on the given requirements, difficulty, and topic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
"""
|
| 150 |
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
|
| 151 |
problem = ""
|
|
@@ -158,6 +268,15 @@ class LLMManager:
|
|
| 158 |
) -> List[Dict[str, str]]:
|
| 159 |
"""
|
| 160 |
Update chat history with the latest user message and code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
"""
|
| 162 |
message = chat_display[-1][0]
|
| 163 |
if code != previous_code:
|
|
@@ -170,6 +289,14 @@ class LLMManager:
|
|
| 170 |
) -> List[Dict[str, str]]:
|
| 171 |
"""
|
| 172 |
Prepare messages to end the interview and generate feedback.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
"""
|
| 174 |
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
|
| 175 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
|
|
@@ -185,6 +312,14 @@ class LLMManager:
|
|
| 185 |
) -> Generator[str, None, None]:
|
| 186 |
"""
|
| 187 |
End the interview and get feedback from the LLM.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
"""
|
| 189 |
if len(chat_history) <= 2:
|
| 190 |
yield "No interview history available"
|
|
|
|
| 2 |
from openai import OpenAI
|
| 3 |
import anthropic
|
| 4 |
from utils.errors import APIError
|
| 5 |
+
from typing import List, Dict, Generator, Optional, Tuple, Any
|
| 6 |
+
import logging
|
| 7 |
|
| 8 |
|
| 9 |
class PromptManager:
|
| 10 |
def __init__(self, prompts: Dict[str, str]):
|
| 11 |
+
"""
|
| 12 |
+
Initialize the PromptManager.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
prompts (Dict[str, str]): A dictionary of prompt keys and their corresponding text.
|
| 16 |
+
"""
|
| 17 |
+
self.prompts: Dict[str, str] = prompts
|
| 18 |
+
self.limit: Optional[str] = os.getenv("DEMO_WORD_LIMIT")
|
| 19 |
|
| 20 |
def add_limit(self, prompt: str) -> str:
|
| 21 |
"""
|
| 22 |
Add word limit to the prompt if specified in the environment variables.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
prompt (str): The original prompt.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
str: The prompt with added word limit if applicable.
|
| 29 |
"""
|
| 30 |
if self.limit:
|
| 31 |
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
|
|
|
|
| 34 |
def get_system_prompt(self, key: str) -> str:
|
| 35 |
"""
|
| 36 |
Retrieve and limit a system prompt by its key.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
key (str): The key for the desired prompt.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
str: The retrieved prompt with added word limit if applicable.
|
| 43 |
+
|
| 44 |
+
Raises:
|
| 45 |
+
KeyError: If the key is not found in the prompts dictionary.
|
| 46 |
"""
|
| 47 |
prompt = self.prompts[key]
|
| 48 |
return self.add_limit(prompt)
|
|
|
|
| 52 |
) -> str:
|
| 53 |
"""
|
| 54 |
Create a problem requirements prompt with optional parameters.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
type (str): The type of problem.
|
| 58 |
+
difficulty (Optional[str]): The difficulty level of the problem.
|
| 59 |
+
topic (Optional[str]): The topic of the problem.
|
| 60 |
+
requirements (Optional[str]): Additional requirements for the problem.
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
str: The constructed problem requirements prompt.
|
| 64 |
"""
|
| 65 |
prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic}. Additional requirements: {requirements}."
|
| 66 |
return self.add_limit(prompt)
|
| 67 |
|
| 68 |
|
| 69 |
class LLMManager:
|
| 70 |
+
def __init__(self, config: Any, prompts: Dict[str, str]):
|
| 71 |
+
"""
|
| 72 |
+
Initialize the LLMManager.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
config (Any): Configuration object containing LLM settings.
|
| 76 |
+
prompts (Dict[str, str]): A dictionary of prompts for the PromptManager.
|
| 77 |
+
"""
|
| 78 |
self.config = config
|
| 79 |
self.llm_type = config.llm.type
|
| 80 |
if self.llm_type == "ANTHROPIC_API":
|
|
|
|
| 91 |
def get_text(self, messages: List[Dict[str, str]], stream: Optional[bool] = None) -> Generator[str, None, None]:
|
| 92 |
"""
|
| 93 |
Generate text from the LLM, optionally streaming the response.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
messages (List[Dict[str, str]]): List of message dictionaries.
|
| 97 |
+
stream (Optional[bool]): Whether to stream the response. Defaults to self.streaming if not provided.
|
| 98 |
+
|
| 99 |
+
Yields:
|
| 100 |
+
str: Generated text chunks.
|
| 101 |
+
|
| 102 |
+
Raises:
|
| 103 |
+
APIError: If an unexpected error occurs during text generation.
|
| 104 |
"""
|
| 105 |
if stream is None:
|
| 106 |
stream = self.streaming
|
| 107 |
try:
|
| 108 |
if self.llm_type == "OPENAI_API":
|
| 109 |
+
yield from self._get_text_openai(messages, stream)
|
| 110 |
elif self.llm_type == "ANTHROPIC_API":
|
| 111 |
+
yield from self._get_text_anthropic(messages, stream)
|
| 112 |
except Exception as e:
|
| 113 |
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
|
| 114 |
|
| 115 |
def _get_text_openai(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
|
| 116 |
+
"""
|
| 117 |
+
Generate text using OpenAI API.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
messages (List[Dict[str, str]]): List of message dictionaries.
|
| 121 |
+
stream (bool): Whether to stream the response.
|
| 122 |
+
|
| 123 |
+
Yields:
|
| 124 |
+
str: Generated text chunks.
|
| 125 |
+
"""
|
| 126 |
if not stream:
|
| 127 |
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000)
|
| 128 |
yield response.choices[0].message.content.strip()
|
|
|
|
| 135 |
yield chunk.choices[0].delta.content
|
| 136 |
|
| 137 |
def _get_text_anthropic(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
|
| 138 |
+
"""
|
| 139 |
+
Generate text using Anthropic API.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
messages (List[Dict[str, str]]): List of message dictionaries.
|
| 143 |
+
stream (bool): Whether to stream the response.
|
| 144 |
+
|
| 145 |
+
Yields:
|
| 146 |
+
str: Generated text chunks.
|
| 147 |
+
"""
|
| 148 |
+
system_message, consolidated_messages = self._prepare_anthropic_messages(messages)
|
| 149 |
+
|
| 150 |
+
if not stream:
|
| 151 |
+
response = self.client.messages.create(
|
| 152 |
+
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
|
| 153 |
+
)
|
| 154 |
+
yield response.content[0].text
|
| 155 |
+
else:
|
| 156 |
+
with self.client.messages.stream(
|
| 157 |
+
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
|
| 158 |
+
) as stream:
|
| 159 |
+
yield from stream.text_stream
|
| 160 |
+
|
| 161 |
+
def _prepare_anthropic_messages(self, messages: List[Dict[str, str]]) -> Tuple[Optional[str], List[Dict[str, str]]]:
|
| 162 |
+
"""
|
| 163 |
+
Prepare messages for Anthropic API format.
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
messages (List[Dict[str, str]]): Original messages in OpenAI format.
|
| 167 |
+
|
| 168 |
+
Returns:
|
| 169 |
+
Tuple[Optional[str], List[Dict[str, str]]]: Tuple containing system message and consolidated messages.
|
| 170 |
+
"""
|
| 171 |
system_message = None
|
| 172 |
consolidated_messages = []
|
| 173 |
|
|
|
|
| 183 |
else:
|
| 184 |
consolidated_messages.append(message.copy())
|
| 185 |
|
| 186 |
+
return system_message, consolidated_messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
def test_llm(self, stream: bool = False) -> bool:
|
| 189 |
"""
|
| 190 |
Test the LLM connection with or without streaming.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
stream (bool): Whether to test streaming functionality.
|
| 194 |
+
|
| 195 |
+
Returns:
|
| 196 |
+
bool: True if the test is successful, False otherwise.
|
| 197 |
"""
|
| 198 |
try:
|
| 199 |
+
test_messages = [
|
| 200 |
+
{"role": "system", "content": "You just help me test the connection."},
|
| 201 |
+
{"role": "user", "content": "Hi!"},
|
| 202 |
+
{"role": "user", "content": "Ping!"},
|
| 203 |
+
]
|
| 204 |
+
list(self.get_text(test_messages, stream=stream))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
return True
|
| 206 |
+
except APIError as e:
|
| 207 |
+
logging.error(f"LLM test failed: {e}")
|
| 208 |
+
return False
|
| 209 |
+
except Exception as e:
|
| 210 |
+
logging.error(f"Unexpected error during LLM test: {e}")
|
| 211 |
return False
|
| 212 |
|
| 213 |
def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]:
|
| 214 |
"""
|
| 215 |
Initialize the bot with a system prompt and problem description.
|
| 216 |
+
|
| 217 |
+
Args:
|
| 218 |
+
problem (str): The problem description.
|
| 219 |
+
interview_type (str): The type of interview. Defaults to "coding".
|
| 220 |
+
|
| 221 |
+
Returns:
|
| 222 |
+
List[Dict[str, str]]: Initial messages for the bot.
|
| 223 |
"""
|
| 224 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
|
| 225 |
return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}]
|
|
|
|
| 227 |
def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]:
|
| 228 |
"""
|
| 229 |
Prepare messages for generating a problem based on given requirements.
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
requirements (str): Specific requirements for the problem.
|
| 233 |
+
difficulty (str): Difficulty level of the problem.
|
| 234 |
+
topic (str): Topic of the problem.
|
| 235 |
+
interview_type (str): Type of interview.
|
| 236 |
+
|
| 237 |
+
Returns:
|
| 238 |
+
List[Dict[str, str]]: Prepared messages for problem generation.
|
| 239 |
"""
|
| 240 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
|
| 241 |
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
|
|
|
|
| 247 |
def get_problem(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> Generator[str, None, None]:
|
| 248 |
"""
|
| 249 |
Get a problem from the LLM based on the given requirements, difficulty, and topic.
|
| 250 |
+
|
| 251 |
+
Args:
|
| 252 |
+
requirements (str): Specific requirements for the problem.
|
| 253 |
+
difficulty (str): Difficulty level of the problem.
|
| 254 |
+
topic (str): Topic of the problem.
|
| 255 |
+
interview_type (str): Type of interview.
|
| 256 |
+
|
| 257 |
+
Yields:
|
| 258 |
+
str: Incrementally generated problem statement.
|
| 259 |
"""
|
| 260 |
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
|
| 261 |
problem = ""
|
|
|
|
| 268 |
) -> List[Dict[str, str]]:
|
| 269 |
"""
|
| 270 |
Update chat history with the latest user message and code.
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
code (str): Current code.
|
| 274 |
+
previous_code (str): Previous code.
|
| 275 |
+
chat_history (List[Dict[str, str]]): Current chat history.
|
| 276 |
+
chat_display (List[List[Optional[str]]]): Current chat display.
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
List[Dict[str, str]]: Updated chat history.
|
| 280 |
"""
|
| 281 |
message = chat_display[-1][0]
|
| 282 |
if code != previous_code:
|
|
|
|
| 289 |
) -> List[Dict[str, str]]:
|
| 290 |
"""
|
| 291 |
Prepare messages to end the interview and generate feedback.
|
| 292 |
+
|
| 293 |
+
Args:
|
| 294 |
+
problem_description (str): The original problem description.
|
| 295 |
+
chat_history (List[Dict[str, str]]): The chat history.
|
| 296 |
+
interview_type (str): The type of interview.
|
| 297 |
+
|
| 298 |
+
Returns:
|
| 299 |
+
List[Dict[str, str]]: Prepared messages for generating feedback.
|
| 300 |
"""
|
| 301 |
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
|
| 302 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
|
|
|
|
| 312 |
) -> Generator[str, None, None]:
|
| 313 |
"""
|
| 314 |
End the interview and get feedback from the LLM.
|
| 315 |
+
|
| 316 |
+
Args:
|
| 317 |
+
problem_description (str): The original problem description.
|
| 318 |
+
chat_history (List[Dict[str, str]]): The chat history.
|
| 319 |
+
interview_type (str): The type of interview. Defaults to "coding".
|
| 320 |
+
|
| 321 |
+
Yields:
|
| 322 |
+
str: Incrementally generated feedback.
|
| 323 |
"""
|
| 324 |
if len(chat_history) <= 2:
|
| 325 |
yield "No interview history available"
|