Update vector_store_retriever.py
Browse files- vector_store_retriever.py +168 -23
vector_store_retriever.py
CHANGED
|
@@ -1,37 +1,182 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
from
|
|
|
|
|
|
|
|
|
|
| 4 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 5 |
-
from langchain.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
model_kwargs={"device": "cpu"}
|
| 11 |
)
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#splitting the text into
|
| 24 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 25 |
-
texts = text_splitter.split_documents(documents)
|
| 26 |
|
| 27 |
-
# Create a Chroma vector store from the PDF documents
|
| 28 |
-
db = Chroma.from_documents(texts, hf, collection_name="my-collection")
|
| 29 |
|
| 30 |
-
class VectoreStoreRetrievalTool:
|
| 31 |
-
def __init__(self):
|
| 32 |
-
self.retriever = db.as_retriever(search_kwargs={"k": 1})
|
| 33 |
|
| 34 |
-
def __call__(self, query):
|
| 35 |
-
# Run the query through the retriever
|
| 36 |
-
response = self.retriever.run(query)
|
| 37 |
-
return response['result']
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
import gradio as gr
|
| 4 |
+
import time
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from typing import Any, Optional, Dict, List
|
| 7 |
+
from huggingface_hub import InferenceClient
|
| 8 |
+
from langchain.llms.base import LLM
|
| 9 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 10 |
+
from langchain.vectorstores import Chroma
|
| 11 |
+
from transformers import AutoTokenizer
|
| 12 |
+
from transformers import Tool
|
| 13 |
+
|
| 14 |
+
load_dotenv()
|
| 15 |
|
| 16 |
+
path_work = "."
|
| 17 |
+
hf_token = os.getenv("HF")
|
| 18 |
+
|
| 19 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
| 20 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 21 |
model_kwargs={"device": "cpu"}
|
| 22 |
)
|
| 23 |
|
| 24 |
+
vectordb = Chroma(
|
| 25 |
+
persist_directory=path_work + '/new_papers',
|
| 26 |
+
embedding_function=embeddings
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 2})#5
|
| 30 |
+
|
| 31 |
+
class KwArgsModel(BaseModel):
|
| 32 |
+
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
| 33 |
+
|
| 34 |
+
class CustomInferenceClient(LLM, KwArgsModel):
|
| 35 |
+
model_name: str
|
| 36 |
+
inference_client: InferenceClient
|
| 37 |
+
|
| 38 |
+
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
|
| 39 |
+
inference_client = InferenceClient(model=model_name, token=hf_token)
|
| 40 |
+
super().__init__(
|
| 41 |
+
model_name=model_name,
|
| 42 |
+
hf_token=hf_token,
|
| 43 |
+
kwargs=kwargs,
|
| 44 |
+
inference_client=inference_client
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def _call(
|
| 48 |
+
self,
|
| 49 |
+
prompt: str,
|
| 50 |
+
stop: Optional[List[str]] = None
|
| 51 |
+
) -> str:
|
| 52 |
+
if stop is not None:
|
| 53 |
+
raise ValueError("stop kwargs are not permitted.")
|
| 54 |
+
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
|
| 55 |
+
response = ''.join(response_gen)
|
| 56 |
+
return response
|
| 57 |
+
|
| 58 |
+
@property
|
| 59 |
+
def _llm_type(self) -> str:
|
| 60 |
+
return "custom"
|
| 61 |
+
|
| 62 |
+
@property
|
| 63 |
+
def _identifying_params(self) -> dict:
|
| 64 |
+
return {"model_name": self.model_name}
|
| 65 |
+
|
| 66 |
+
kwargs = {"max_new_tokens": 256, "temperature": 0.9, "top_p": 0.6, "repetition_penalty": 1.3, "do_sample": True}
|
| 67 |
+
|
| 68 |
+
model_list = [
|
| 69 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
| 70 |
+
"HuggingFaceH4/zephyr-7b-alpha",
|
| 71 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
| 72 |
+
"tiiuae/falcon-180B-chat"
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
qa_chain = None
|
| 76 |
+
|
| 77 |
+
def load_model(model_selected):
|
| 78 |
+
global qa_chain
|
| 79 |
+
model_name = model_selected
|
| 80 |
+
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)
|
| 81 |
+
|
| 82 |
+
from langchain.chains import RetrievalQA
|
| 83 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 84 |
+
llm=llm,
|
| 85 |
+
chain_type="stuff",
|
| 86 |
+
retriever=retriever,
|
| 87 |
+
return_source_documents=True,
|
| 88 |
+
verbose=True,
|
| 89 |
+
)
|
| 90 |
+
return qa_chain
|
| 91 |
+
|
| 92 |
+
load_model("meta-llama/Llama-2-70b-chat-hf")
|
| 93 |
+
|
| 94 |
+
##########
|
| 95 |
+
#####
|
| 96 |
+
#########
|
| 97 |
+
|
| 98 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
| 99 |
+
from langchain.document_loaders.utils import RecursiveCharacterTextSplitter
|
| 100 |
+
from langchain.vectorstores import Chroma
|
| 101 |
+
|
| 102 |
+
def load_and_process_pdfs(directory_path: str, chunk_size: int = 500, chunk_overlap: int = 200, collection_name: str = "my-collection"):
|
| 103 |
+
# Load PDF files from the specified directory
|
| 104 |
+
loader = PyPDFDirectoryLoader(directory_path)
|
| 105 |
+
documents = loader.load()
|
| 106 |
+
|
| 107 |
+
# Split the text into chunks
|
| 108 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 109 |
+
texts = text_splitter.split_documents(documents)
|
| 110 |
+
|
| 111 |
+
# Create a Chroma vector store from the processed texts
|
| 112 |
+
db = Chroma.from_documents(texts, hf, collection_name=collection_name)
|
| 113 |
+
|
| 114 |
+
return db # You can return the Chroma vector store if needed
|
| 115 |
+
|
| 116 |
+
# Call the function with the desired directory path and parameters
|
| 117 |
+
load_and_process_pdfs("new_papers/")
|
| 118 |
+
|
| 119 |
+
###
|
| 120 |
+
###
|
| 121 |
+
###
|
| 122 |
+
|
| 123 |
+
def predict(message, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3):
|
| 124 |
+
temperature = float(temperature)
|
| 125 |
+
if temperature < 1e-2: temperature = 1e-2
|
| 126 |
+
top_p = float(top_p)
|
| 127 |
+
|
| 128 |
+
llm_response = qa_chain(message)
|
| 129 |
+
res_result = llm_response['result']
|
| 130 |
+
|
| 131 |
+
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
|
| 132 |
+
response = f"{res_result}" + "\n\n" + "[Answer Source Documents (Ctrl + Click!)] :" + "\n" + f" \n {res_relevant_doc}"
|
| 133 |
+
print("response: =====> \n", response, "\n\n")
|
| 134 |
+
|
| 135 |
+
tokens = response.split('\n')
|
| 136 |
+
token_list = []
|
| 137 |
+
for idx, token in enumerate(tokens):
|
| 138 |
+
token_dict = {"id": idx + 1, "text": token}
|
| 139 |
+
token_list.append(token_dict)
|
| 140 |
+
response = {"data": {"token": token_list}}
|
| 141 |
+
response = json.dumps(response, indent=4)
|
| 142 |
+
|
| 143 |
+
response = json.loads(response)
|
| 144 |
+
data_dict = response.get('data', {})
|
| 145 |
+
token_list = data_dict.get('token', [])
|
| 146 |
+
|
| 147 |
+
partial_message = ""
|
| 148 |
+
for token_entry in token_list:
|
| 149 |
+
if token_entry:
|
| 150 |
+
try:
|
| 151 |
+
token_id = token_entry.get('id', None)
|
| 152 |
+
token_text = token_entry.get('text', None)
|
| 153 |
+
|
| 154 |
+
if token_text:
|
| 155 |
+
for char in token_text:
|
| 156 |
+
partial_message += char
|
| 157 |
+
yield partial_message
|
| 158 |
+
time.sleep(0.01)
|
| 159 |
+
else:
|
| 160 |
+
print(f"[[워닝]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
|
| 161 |
+
pass
|
| 162 |
|
| 163 |
+
except KeyError as e:
|
| 164 |
+
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
|
| 165 |
+
continue
|
| 166 |
|
| 167 |
+
class TextGeneratorTool(Tool):
|
| 168 |
+
name = "vector_retriever"
|
| 169 |
+
description = "This tool searches in a vector store based on a given prompt."
|
| 170 |
+
inputs = ["prompt"]
|
| 171 |
+
outputs = ["generated_text"]
|
| 172 |
|
| 173 |
+
def __init__(self):
|
| 174 |
+
#self.retriever = db.as_retriever(search_kwargs={"k": 1})
|
| 175 |
+
|
| 176 |
+
def __call__(self, prompt: str):
|
| 177 |
+
result = predict(prompt, 0.9, 512, 0.6, 1.4)
|
| 178 |
+
return result
|
| 179 |
|
|
|
|
|
|
|
|
|
|
| 180 |
|
|
|
|
|
|
|
| 181 |
|
|
|
|
|
|
|
|
|
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|