Update app.py
Browse files
app.py
CHANGED
|
@@ -20,6 +20,10 @@ print("-----------")
|
|
| 20 |
print(documents[0])
|
| 21 |
print("-----------")
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Extract the embedding arrays from the PDF documents
|
| 25 |
embeddings = []
|
|
@@ -27,7 +31,9 @@ for doc in documents:
|
|
| 27 |
embeddings.extend(doc['embeddings'])
|
| 28 |
|
| 29 |
# Create Chroma vector store for API embeddings
|
| 30 |
-
api_db = Chroma.
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
# Define the PDF retrieval function
|
|
|
|
| 20 |
print(documents[0])
|
| 21 |
print("-----------")
|
| 22 |
|
| 23 |
+
# Split the documents into chunks and embed them using the HfApiEmbeddingTool
|
| 24 |
+
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
|
| 25 |
+
vdocuments = text_splitter.split_documents(documents)
|
| 26 |
+
|
| 27 |
|
| 28 |
# Extract the embedding arrays from the PDF documents
|
| 29 |
embeddings = []
|
|
|
|
| 31 |
embeddings.extend(doc['embeddings'])
|
| 32 |
|
| 33 |
# Create Chroma vector store for API embeddings
|
| 34 |
+
api_db = Chroma.from_documents(vdocuments, HfApiEmbeddingRetriever, collection_name="api-collection")
|
| 35 |
+
|
| 36 |
+
#api_db = Chroma.from_texts(embeddings, api_hf_embeddings, collection_name="api-collection")
|
| 37 |
|
| 38 |
|
| 39 |
# Define the PDF retrieval function
|