Update app.py
Browse files
app.py
CHANGED
|
@@ -19,11 +19,25 @@ print("-----------")
|
|
| 19 |
print(documents)
|
| 20 |
print("-----------")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Create Chroma vector store for API embeddings
|
| 24 |
-
api_db = Chroma.from_documents(
|
| 25 |
#api_db = Chroma.from_texts(documents, api_hf_embeddings, collection_name="api-collection")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
class PDFRetrievalTool:
|
| 28 |
def __init__(self, retriever):
|
| 29 |
self.retriever = retriever
|
|
|
|
| 19 |
print(documents)
|
| 20 |
print("-----------")
|
| 21 |
|
| 22 |
+
# Load the document, split it into chunks, embed each chunk and load it into the vector store.
|
| 23 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 24 |
+
vdocuments = text_splitter.split_documents(documents)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
|
| 31 |
# Create Chroma vector store for API embeddings
|
| 32 |
+
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")
|
| 33 |
#api_db = Chroma.from_texts(documents, api_hf_embeddings, collection_name="api-collection")
|
| 34 |
|
| 35 |
+
#Similarity search
|
| 36 |
+
query = "What did the president say about Ketanji Brown Jackson"
|
| 37 |
+
docs = db.similarity_search(query)
|
| 38 |
+
print(docs[0].page_content)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
class PDFRetrievalTool:
|
| 42 |
def __init__(self, retriever):
|
| 43 |
self.retriever = retriever
|