Update vector_store_retriever.py
Browse files- vector_store_retriever.py +25 -45
vector_store_retriever.py
CHANGED
|
@@ -1,59 +1,39 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
| 3 |
from langchain.vectorstores import Chroma
|
| 4 |
-
from langchain.
|
| 5 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 6 |
-
from langchain.agents import Tool
|
| 7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain.llms import HuggingFacePipeline
|
| 9 |
-
from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
texts = text_splitter.split_documents(documents)
|
| 18 |
-
|
| 19 |
-
# HF Instructor Embeddings
|
| 20 |
-
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs={"device": "cuda"})
|
| 21 |
-
|
| 22 |
-
# Embed and store the texts
|
| 23 |
-
persist_directory = 'db'
|
| 24 |
-
embedding = instructor_embeddings
|
| 25 |
-
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
|
| 26 |
-
|
| 27 |
-
# Make a retriever
|
| 28 |
-
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
| 29 |
-
|
| 30 |
-
# Setup LLM for text generation
|
| 31 |
-
tokenizer = LlamaTokenizer.from_pretrained("TheBloke/wizardLM-7B-HF")
|
| 32 |
-
model = LlamaForCausalLM.from_pretrained("TheBloke/wizardLM-7B-HF", load_in_8bit=True, device_map='auto', torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
| 33 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1024, temperature=0, top_p=0.95, repetition_penalty=1.15)
|
| 34 |
-
local_llm = HuggingFacePipeline(pipeline=pipe)
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
description = "This tool uses LangChain's RetrievalQA to find relevant answers from a vector store based on a given query."
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
def __call__(self, query
|
| 47 |
-
# Run the query through the
|
| 48 |
-
|
| 49 |
-
return
|
| 50 |
|
| 51 |
-
# Create the Gradio interface using the
|
| 52 |
tool = gr.Interface(
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
live=True,
|
| 55 |
-
title="
|
| 56 |
-
description="This tool
|
| 57 |
)
|
| 58 |
|
| 59 |
# Launch the Gradio interface
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from langchain.vectorstores import Chroma
|
| 3 |
+
from langchain.document_loaders import PyPDFLoader
|
| 4 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Initialize the HuggingFaceInstructEmbeddings
|
| 7 |
+
hf = HuggingFaceInstructEmbeddings(
|
| 8 |
+
model_name="hkunlp/instructor-large",
|
| 9 |
+
embed_instruction="Represent the document for retrieval: ",
|
| 10 |
+
query_instruction="Represent the query for retrieval: "
|
| 11 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Load and process the PDF files
|
| 14 |
+
loader = PyPDFLoader('./new_papers/new_papers/', glob="./*.pdf")
|
| 15 |
+
documents = loader.load()
|
| 16 |
|
| 17 |
+
# Create a Chroma vector store from the PDF documents
|
| 18 |
+
db = Chroma.from_documents(documents, hf, collection_name="my-collection")
|
|
|
|
| 19 |
|
| 20 |
+
class VectoreStoreRetrievalTool:
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.retriever = db.as_retriever(search_kwargs={"k": 1})
|
| 23 |
|
| 24 |
+
def __call__(self, query):
|
| 25 |
+
# Run the query through the retriever
|
| 26 |
+
response = self.retriever.run(query)
|
| 27 |
+
return response['result']
|
| 28 |
|
| 29 |
+
# Create the Gradio interface using the PDFRetrievalTool
|
| 30 |
tool = gr.Interface(
|
| 31 |
+
PDFRetrievalTool(),
|
| 32 |
+
inputs=gr.Textbox(),
|
| 33 |
+
outputs=gr.Textbox(),
|
| 34 |
live=True,
|
| 35 |
+
title="PDF Retrieval Tool",
|
| 36 |
+
description="This tool indexes PDF documents and retrieves relevant answers based on a given query.",
|
| 37 |
)
|
| 38 |
|
| 39 |
# Launch the Gradio interface
|