Update app.py
Browse files
app.py
CHANGED
|
@@ -14,45 +14,30 @@ api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
|
|
| 14 |
)
|
| 15 |
|
| 16 |
# Load and process the PDF files
|
| 17 |
-
loader = PyPDFLoader("
|
| 18 |
-
loader
|
| 19 |
documents = loader.load()
|
| 20 |
print("-----------")
|
| 21 |
print(documents)
|
| 22 |
print("-----------")
|
| 23 |
|
| 24 |
-
# Load the document, split it into chunks, embed each chunk and load it into the vector store.
|
| 25 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 26 |
vdocuments = text_splitter.split_documents(documents)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
# Create Chroma vector store for API embeddings
|
| 34 |
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")
|
| 35 |
-
#api_db = Chroma.from_texts(documents, api_hf_embeddings, collection_name="api-collection")
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
query
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
class PDFRetrievalTool:
|
| 44 |
-
def __init__(self, retriever):
|
| 45 |
-
self.retriever = retriever
|
| 46 |
-
|
| 47 |
-
def __call__(self, query):
|
| 48 |
-
# Run the query through the retriever
|
| 49 |
-
response = self.retriever.run(query)
|
| 50 |
-
return response['result']
|
| 51 |
|
|
|
|
| 52 |
# Create Gradio interface for the API retriever
|
| 53 |
api_tool = gr.Interface(
|
| 54 |
-
|
| 55 |
-
inputs=gr.Textbox(),
|
| 56 |
outputs=gr.Textbox(),
|
| 57 |
live=True,
|
| 58 |
title="API PDF Retrieval Tool",
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
# Load and process the PDF files
|
| 17 |
+
loader = PyPDFLoader("/content/ReACT.pdf")
|
|
|
|
| 18 |
documents = loader.load()
|
| 19 |
print("-----------")
|
| 20 |
print(documents)
|
| 21 |
print("-----------")
|
| 22 |
|
| 23 |
+
# Load the document, split it into chunks, embed each chunk, and load it into the vector store.
|
| 24 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 25 |
vdocuments = text_splitter.split_documents(documents)
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Create Chroma vector store for API embeddings
|
| 28 |
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")
|
|
|
|
| 29 |
|
| 30 |
+
# Define the PDF retrieval function
|
| 31 |
+
def pdf_retrieval(query):
|
| 32 |
+
# Run the query through the retriever
|
| 33 |
+
response = api_db.similarity_search(query)
|
| 34 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Create Gradio interface for the API retriever
|
| 37 |
# Create Gradio interface for the API retriever
|
| 38 |
api_tool = gr.Interface(
|
| 39 |
+
fn=pdf_retrieval,
|
| 40 |
+
inputs=[gr.Textbox()],
|
| 41 |
outputs=gr.Textbox(),
|
| 42 |
live=True,
|
| 43 |
title="API PDF Retrieval Tool",
|