Update vector_store_retriever.py
Browse files
vector_store_retriever.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
from langchain.vectorstores import Chroma
|
| 3 |
from langchain.document_loaders import PyPDFLoader
|
| 4 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
|
|
| 5 |
|
| 6 |
# Initialize the HuggingFaceInstructEmbeddings
|
| 7 |
hf = HuggingFaceInstructEmbeddings(
|
|
@@ -14,8 +15,12 @@ hf = HuggingFaceInstructEmbeddings(
|
|
| 14 |
loader = PyPDFLoader('./new_papers/new_papers/', glob="./*.pdf")
|
| 15 |
documents = loader.load()
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Create a Chroma vector store from the PDF documents
|
| 18 |
-
db = Chroma.from_documents(
|
| 19 |
|
| 20 |
class VectoreStoreRetrievalTool:
|
| 21 |
def __init__(self):
|
|
|
|
| 2 |
from langchain.vectorstores import Chroma
|
| 3 |
from langchain.document_loaders import PyPDFLoader
|
| 4 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
|
| 7 |
# Initialize the HuggingFaceInstructEmbeddings
|
| 8 |
hf = HuggingFaceInstructEmbeddings(
|
|
|
|
| 15 |
loader = PyPDFLoader('./new_papers/new_papers/', glob="./*.pdf")
|
| 16 |
documents = loader.load()
|
| 17 |
|
| 18 |
+
#splitting the text into
|
| 19 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 20 |
+
texts = text_splitter.split_documents(documents)
|
| 21 |
+
|
| 22 |
# Create a Chroma vector store from the PDF documents
|
| 23 |
+
db = Chroma.from_documents(texts, hf, collection_name="my-collection")
|
| 24 |
|
| 25 |
class VectoreStoreRetrievalTool:
|
| 26 |
def __init__(self):
|