Update app.py
Browse files
app.py
CHANGED
|
@@ -24,13 +24,27 @@ print("-----------")
|
|
| 24 |
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
|
| 25 |
vdocuments = text_splitter.split_documents(documents)
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Extract the embedding arrays from the PDF documents
|
| 28 |
-
embeddings = []
|
| 29 |
-
for doc in vdocuments:
|
| 30 |
-
embeddings.extend(api_hf_embeddings.get_embeddings(doc))
|
| 31 |
|
| 32 |
# Create Chroma vector store for API embeddings
|
| 33 |
-
api_db = Chroma.from_documents(vdocuments, HfApiEmbeddingRetriever, collection_name="api-collection")
|
| 34 |
|
| 35 |
# Define the PDF retrieval function
|
| 36 |
def pdf_retrieval(query):
|
|
|
|
| 24 |
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
|
| 25 |
vdocuments = text_splitter.split_documents(documents)
|
| 26 |
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
model = "BAAI/bge-base-en-v1.5"
|
| 31 |
+
encode_kwargs = {
|
| 32 |
+
"normalize_embeddings": True
|
| 33 |
+
} # set True to compute cosine similarity
|
| 34 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 35 |
+
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
|
| 36 |
+
)
|
| 37 |
+
api_db = FAISS.from_texts(texts=vdocuments, embedding=embeddings)
|
| 38 |
+
api_db.as_retriever.similarity("What is ICD?")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
# Extract the embedding arrays from the PDF documents
|
| 42 |
+
#embeddings = []
|
| 43 |
+
#for doc in vdocuments:
|
| 44 |
+
# embeddings.extend(api_hf_embeddings.get_embeddings(doc))
|
| 45 |
|
| 46 |
# Create Chroma vector store for API embeddings
|
| 47 |
+
#api_db = Chroma.from_documents(vdocuments, HfApiEmbeddingRetriever, collection_name="api-collection")
|
| 48 |
|
| 49 |
# Define the PDF retrieval function
|
| 50 |
def pdf_retrieval(query):
|