Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
|
@@ -63,6 +63,18 @@ def load_sample3():
|
|
| 63 |
def load_sample4():
|
| 64 |
return load_sample(4)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
import torchvision
|
| 67 |
|
| 68 |
def load_sample(index):
|
|
@@ -90,7 +102,6 @@ def load_sample(index):
|
|
| 90 |
|
| 91 |
|
| 92 |
def predict(sample_index):
|
| 93 |
-
print(sample_index)
|
| 94 |
sample = torch.load(f"samples/val{sample_index-1}.pt")
|
| 95 |
model.eval()
|
| 96 |
with torch.no_grad():
|
|
@@ -111,11 +122,12 @@ def predict(sample_index):
|
|
| 111 |
|
| 112 |
return [pil_images_output[0], pil_images_output[1], pil_images_output[2]]
|
| 113 |
|
| 114 |
-
with gr.Blocks(
|
|
|
|
| 115 |
) as demo:
|
| 116 |
sample_index = gr.State([])
|
| 117 |
|
| 118 |
-
gr.HTML(
|
| 119 |
|
| 120 |
with gr.Row():
|
| 121 |
input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
|
|
@@ -135,6 +147,10 @@ with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", titl
|
|
| 135 |
example2_btn = gr.Button("Example 2")
|
| 136 |
example3_btn = gr.Button("Example 3")
|
| 137 |
example4_btn = gr.Button("Example 4")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
example1_btn.click(fn=load_sample1, inputs=None,
|
| 140 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
|
@@ -148,6 +164,18 @@ with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", titl
|
|
| 148 |
example4_btn.click(fn=load_sample4, inputs=None,
|
| 149 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
| 150 |
label_image0, label_image1, label_image2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
with gr.Row():
|
| 153 |
output_image0 = gr.Image(label="output channel 0", type="pil")
|
|
|
|
| 63 |
def load_sample4():
|
| 64 |
return load_sample(4)
|
| 65 |
|
| 66 |
+
def load_sample5():
|
| 67 |
+
return load_sample(5)
|
| 68 |
+
|
| 69 |
+
def load_sample6():
|
| 70 |
+
return load_sample(6)
|
| 71 |
+
|
| 72 |
+
def load_sample7():
|
| 73 |
+
return load_sample(7)
|
| 74 |
+
|
| 75 |
+
def load_sample8():
|
| 76 |
+
return load_sample(8)
|
| 77 |
+
|
| 78 |
import torchvision
|
| 79 |
|
| 80 |
def load_sample(index):
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
def predict(sample_index):
|
|
|
|
| 105 |
sample = torch.load(f"samples/val{sample_index-1}.pt")
|
| 106 |
model.eval()
|
| 107 |
with torch.no_grad():
|
|
|
|
| 122 |
|
| 123 |
return [pil_images_output[0], pil_images_output[1], pil_images_output[2]]
|
| 124 |
|
| 125 |
+
with gr.Blocks( title="Brain tumor 3D segmentation with MONAIMNIST - ClassCat"
|
| 126 |
+
css=".gradio-container {background:azure;}",
|
| 127 |
) as demo:
|
| 128 |
sample_index = gr.State([])
|
| 129 |
|
| 130 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">Brain tumor 3D segmentation with MONAI</div>""")
|
| 131 |
|
| 132 |
with gr.Row():
|
| 133 |
input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
|
|
|
|
| 147 |
example2_btn = gr.Button("Example 2")
|
| 148 |
example3_btn = gr.Button("Example 3")
|
| 149 |
example4_btn = gr.Button("Example 4")
|
| 150 |
+
example5_btn = gr.Button("Example 5")
|
| 151 |
+
example6_btn = gr.Button("Example 6")
|
| 152 |
+
example7_btn = gr.Button("Example 7")
|
| 153 |
+
example8_btn = gr.Button("Example 8")
|
| 154 |
|
| 155 |
example1_btn.click(fn=load_sample1, inputs=None,
|
| 156 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
|
|
|
| 164 |
example4_btn.click(fn=load_sample4, inputs=None,
|
| 165 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
| 166 |
label_image0, label_image1, label_image2])
|
| 167 |
+
example5_btn.click(fn=load_sample5, inputs=None,
|
| 168 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
| 169 |
+
label_image0, label_image1, label_image2])
|
| 170 |
+
example6_btn.click(fn=load_sample6, inputs=None,
|
| 171 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
| 172 |
+
label_image0, label_image1, label_image2])
|
| 173 |
+
example7_btn.click(fn=load_sample7, inputs=None,
|
| 174 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
| 175 |
+
label_image0, label_image1, label_image2])
|
| 176 |
+
example8_btn.click(fn=load_sample8, inputs=None,
|
| 177 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
| 178 |
+
label_image0, label_image1, label_image2])
|
| 179 |
|
| 180 |
with gr.Row():
|
| 181 |
output_image0 = gr.Image(label="output channel 0", type="pil")
|