Spaces:
Running
Running
TedYeh
commited on
Commit
·
e774cd9
1
Parent(s):
8a7491d
update files
Browse files- app.py +25 -4
- dataloader.py +73 -0
- models/model_7.pt +3 -0
- predictor.py +284 -0
- requirements.txt +7 -0
app.py
CHANGED
|
@@ -1,7 +1,28 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
def
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from predictor import inference
|
| 3 |
|
| 4 |
+
def index_predict(name):
|
| 5 |
+
outputs, preds, heights, bust, waist, hips, description = inference(os.path.join(app.config['UPLOAD_FOLDER'], filename), epoch = 7)
|
| 6 |
+
return heights, round(float(bust)), round(float(waist)), round(float(hips)), description[0], description[1]
|
| 7 |
|
| 8 |
+
with gr.Blocks() as demo:
|
| 9 |
+
gr.Markdown(
|
| 10 |
+
"""
|
| 11 |
+
# 身材數據評估器 - Body Index Predictor
|
| 12 |
+
### Input A FACE and get the body index
|
| 13 |
+
"""
|
| 14 |
+
)
|
| 15 |
+
image = gr.Image(type="pil")
|
| 16 |
+
# 設定輸出元件
|
| 17 |
+
heights = gr.Textbox(label="Heignt")
|
| 18 |
+
bust = gr.Textbox(label="Bust")
|
| 19 |
+
waist = gr.Textbox(label="Waist")
|
| 20 |
+
hips = gr.Textbox(label="Hips")
|
| 21 |
+
en_des = gr.Textbox(label="English description")
|
| 22 |
+
zh_des = gr.Textbox(label="Chinese description")
|
| 23 |
+
|
| 24 |
+
#設定按鈕
|
| 25 |
+
submit = gr.Button("Submit")
|
| 26 |
+
#設定按鈕點選事件
|
| 27 |
+
greet_btn.click(fn=index_predict, inputs=image, outputs=[heights, bust, waist, hips, en_des, zh_des])
|
| 28 |
+
demo.launch()
|
dataloader.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from random import shuffle
|
| 2 |
+
import torch
|
| 3 |
+
import csv, os
|
| 4 |
+
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, Dataset, SequentialSampler
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from torchvision.io import read_image
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import math
|
| 13 |
+
from transformers import AutoImageProcessor
|
| 14 |
+
|
| 15 |
+
class imgDataset(Dataset):
|
| 16 |
+
def __init__(self, path, mode='train', use_processor=True):
|
| 17 |
+
self.path = path
|
| 18 |
+
self.mode = mode
|
| 19 |
+
self.use_processor = use_processor
|
| 20 |
+
self.image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
| 21 |
+
self.transform = {
|
| 22 |
+
'train': transforms.Compose([
|
| 23 |
+
transforms.RandomResizedCrop(224),
|
| 24 |
+
transforms.RandomHorizontalFlip(),
|
| 25 |
+
transforms.ToTensor(),
|
| 26 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 27 |
+
]),
|
| 28 |
+
'val': transforms.Compose([
|
| 29 |
+
transforms.Resize(256),
|
| 30 |
+
transforms.CenterCrop(224),
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 33 |
+
])
|
| 34 |
+
}
|
| 35 |
+
self.trans = self.transform[mode]
|
| 36 |
+
self.data = self.get_data()
|
| 37 |
+
|
| 38 |
+
def convert_body_to_int(self, pos, file_name_list):
|
| 39 |
+
body_str = file_name_list[1].split('-')[pos]
|
| 40 |
+
if not body_str: body_str = '62'
|
| 41 |
+
body = int(body_str[1:3]) if not body_str.isdigit() else int(body_str)
|
| 42 |
+
body = 100+body if body <= 25 else body
|
| 43 |
+
return body
|
| 44 |
+
|
| 45 |
+
def get_data(self):
|
| 46 |
+
data = []
|
| 47 |
+
with open(self.path, 'r', encoding='utf-8') as f:
|
| 48 |
+
for line in f.readlines():
|
| 49 |
+
file_name_list = line.split(' ')
|
| 50 |
+
if not self.mode in file_name_list:continue
|
| 51 |
+
label, h = 0 if file_name_list[2]=="big" else 1, float(file_name_list[3])
|
| 52 |
+
b = self.convert_body_to_int(0, file_name_list)
|
| 53 |
+
w = self.convert_body_to_int(1, file_name_list)
|
| 54 |
+
hh = self.convert_body_to_int(2, file_name_list)
|
| 55 |
+
data.append([os.path.join('images', file_name_list[0], file_name_list[2], file_name_list[1]), label, h, b, w, hh])
|
| 56 |
+
return data
|
| 57 |
+
|
| 58 |
+
def __len__(self):
|
| 59 |
+
return len(self.data)
|
| 60 |
+
|
| 61 |
+
def __getitem__(self, idx):
|
| 62 |
+
img_path, label, h, b, w, hh = self.data[idx]
|
| 63 |
+
inp_img = Image.open(img_path).convert("RGB")
|
| 64 |
+
if not self.use_processor: image_tensor = self.trans(inp_img)
|
| 65 |
+
else:image_tensor = self.image_processor(images=inp_img, return_tensors="pt")
|
| 66 |
+
return image_tensor, label, torch.tensor(h, dtype=torch.float), torch.tensor(b, dtype=torch.float), torch.tensor(w, dtype=torch.float), torch.tensor(hh, dtype=torch.float)
|
| 67 |
+
|
| 68 |
+
if __name__ == "__main__":
|
| 69 |
+
train_dataset = imgDataset('labels.txt', mode='train')
|
| 70 |
+
test_dataset = imgDataset('labels.txt', mode='val')
|
| 71 |
+
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
| 72 |
+
print(len(train_dataset), len(test_dataset))
|
| 73 |
+
print(next(iter(train_dataloader)))
|
models/model_7.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14e707cfc153a9bfe7d61b2eb87e7ab4b68a90cc9131d72ffd53fa96f18bcc3c
|
| 3 |
+
size 99083113
|
predictor.py
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import print_function, division
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
from torch.optim import lr_scheduler
|
| 7 |
+
import torch.backends.cudnn as cudnn
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torchvision
|
| 10 |
+
from torchvision import datasets, models, transforms
|
| 11 |
+
from torch.utils.data import TensorDataset, DataLoader
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
from dataloader import imgDataset
|
| 15 |
+
import time
|
| 16 |
+
import os
|
| 17 |
+
import copy
|
| 18 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 19 |
+
from transformers import AutoImageProcessor, ResNetModel
|
| 20 |
+
from translate import Translator
|
| 21 |
+
|
| 22 |
+
PATH = './images/'
|
| 23 |
+
|
| 24 |
+
class CUPredictor_v2(nn.Module):
|
| 25 |
+
def __init__(self, num_class=2):
|
| 26 |
+
super(CUPredictor_v2, self).__init__()
|
| 27 |
+
self.base = ResNetModel.from_pretrained("microsoft/resnet-50")
|
| 28 |
+
num_ftrs = 2048
|
| 29 |
+
#self.base.fc = nn.Linear(num_ftrs, num_ftrs//2)
|
| 30 |
+
self.classifier = nn.Linear(num_ftrs, num_class)
|
| 31 |
+
self.height_regressor = nn.Linear(num_ftrs, 1)
|
| 32 |
+
self.relu = nn.ReLU()
|
| 33 |
+
|
| 34 |
+
def forward(self, input_img):
|
| 35 |
+
output = self.base(input_img['pixel_values'].squeeze(1)).pooler_output.squeeze()
|
| 36 |
+
predict_cls = self.classifier(output)
|
| 37 |
+
predict_height = self.relu(self.height_regressor(output))
|
| 38 |
+
return predict_cls, predict_height
|
| 39 |
+
|
| 40 |
+
class CUPredictor(nn.Module):
|
| 41 |
+
def __init__(self, num_class=2):
|
| 42 |
+
super(CUPredictor, self).__init__()
|
| 43 |
+
self.base = torchvision.models.resnet50(pretrained=True)
|
| 44 |
+
for param in self.base.parameters():
|
| 45 |
+
param.requires_grad = False
|
| 46 |
+
|
| 47 |
+
num_ftrs = self.base.fc.in_features
|
| 48 |
+
self.base.fc = nn.Sequential(
|
| 49 |
+
nn.Linear(num_ftrs, num_ftrs//4),
|
| 50 |
+
nn.ReLU(),
|
| 51 |
+
nn.Linear(num_ftrs//4, num_ftrs//8),
|
| 52 |
+
nn.ReLU()
|
| 53 |
+
)
|
| 54 |
+
self.classifier = nn.Linear(num_ftrs//8, num_class)
|
| 55 |
+
self.regressor_h = nn.Linear(num_ftrs//8, 1)
|
| 56 |
+
self.regressor_b = nn.Linear(num_ftrs//8, 1)
|
| 57 |
+
self.regressor_w = nn.Linear(num_ftrs//8, 1)
|
| 58 |
+
self.regressor_hi = nn.Linear(num_ftrs//8, 1)
|
| 59 |
+
self.relu = nn.ReLU()
|
| 60 |
+
|
| 61 |
+
def forward(self, input_img):
|
| 62 |
+
output = self.base(input_img)
|
| 63 |
+
predict_cls = self.classifier(output)
|
| 64 |
+
predict_h = self.relu(self.regressor_h(output))
|
| 65 |
+
predict_b = self.relu(self.regressor_b(output))
|
| 66 |
+
predict_w = self.relu(self.regressor_w(output))
|
| 67 |
+
predict_hi = self.relu(self.regressor_hi(output))
|
| 68 |
+
return predict_cls, predict_h, predict_b, predict_w, predict_hi
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def imshow(inp, title=None):
|
| 72 |
+
"""Imshow for Tensor."""
|
| 73 |
+
inp = inp.numpy().transpose((1, 2, 0))
|
| 74 |
+
mean = np.array([0.485, 0.456, 0.406])
|
| 75 |
+
std = np.array([0.229, 0.224, 0.225])
|
| 76 |
+
inp = std * inp + mean
|
| 77 |
+
inp = np.clip(inp, 0, 1)
|
| 78 |
+
plt.imshow(inp)
|
| 79 |
+
if title is not None:
|
| 80 |
+
plt.title(title)
|
| 81 |
+
plt.pause(0.001) # pause a bit so that plots are updated
|
| 82 |
+
plt.savefig(f'images/preds/prediction.png')
|
| 83 |
+
|
| 84 |
+
def train_model(model, device, dataloaders, dataset_sizes, num_epochs=25):
|
| 85 |
+
since = time.time()
|
| 86 |
+
ce = nn.CrossEntropyLoss()
|
| 87 |
+
mse = nn.MSELoss()
|
| 88 |
+
optimizer = optim.AdamW(model.parameters(), lr=0.0008)
|
| 89 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
| 90 |
+
best_acc = 0.0
|
| 91 |
+
|
| 92 |
+
for epoch in range(num_epochs):
|
| 93 |
+
print(f'Epoch {epoch+1}/{num_epochs}')
|
| 94 |
+
print('-' * 10)
|
| 95 |
+
|
| 96 |
+
# Each epoch has a training and validation phase
|
| 97 |
+
for phase in ['train', 'val']:
|
| 98 |
+
if phase == 'train':
|
| 99 |
+
model.train() # Set model to training mode
|
| 100 |
+
else:
|
| 101 |
+
model.eval() # Set model to evaluate mode
|
| 102 |
+
|
| 103 |
+
running_ce_loss = 0.0
|
| 104 |
+
running_rmse_loss = 0.0
|
| 105 |
+
running_corrects = 0
|
| 106 |
+
|
| 107 |
+
# Iterate over data.
|
| 108 |
+
for inputs, labels, heights, bust, waist, hips in dataloaders[phase]:
|
| 109 |
+
inputs = inputs.to(device)
|
| 110 |
+
labels = labels.to(device)
|
| 111 |
+
heights = heights.to(device)
|
| 112 |
+
bust = bust.to(device)
|
| 113 |
+
waist, hips = waist.to(device), hips.to(device)
|
| 114 |
+
# zero the parameter gradients
|
| 115 |
+
optimizer.zero_grad()
|
| 116 |
+
|
| 117 |
+
# forward
|
| 118 |
+
# track history if only in train
|
| 119 |
+
with torch.set_grad_enabled(phase == 'train'):
|
| 120 |
+
outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
|
| 121 |
+
_, preds = torch.max(outputs_c, 1)
|
| 122 |
+
ce_loss = ce(outputs_c, labels)
|
| 123 |
+
rmse_loss_h = torch.sqrt(mse(outputs_h, heights.unsqueeze(-1)))
|
| 124 |
+
rmse_loss_b = torch.sqrt(mse(outputs_b, bust.unsqueeze(-1)))
|
| 125 |
+
rmse_loss_w = torch.sqrt(mse(outputs_w, waist.unsqueeze(-1)))
|
| 126 |
+
rmse_loss_hi = torch.sqrt(mse(outputs_hi, hips.unsqueeze(-1)))
|
| 127 |
+
rmse_loss = rmse_loss_h*4 + rmse_loss_b*2 + rmse_loss_w + rmse_loss_hi
|
| 128 |
+
loss = ce_loss + (rmse_loss)*1
|
| 129 |
+
|
| 130 |
+
# backward + optimize only if in training phase
|
| 131 |
+
if phase == 'train':
|
| 132 |
+
loss.backward()
|
| 133 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
| 134 |
+
optimizer.step()
|
| 135 |
+
|
| 136 |
+
# statistics
|
| 137 |
+
running_ce_loss += ce_loss.item() * inputs.size(0)
|
| 138 |
+
running_rmse_loss += rmse_loss.item() * inputs.size(0)
|
| 139 |
+
running_corrects += torch.sum(preds == labels.data)
|
| 140 |
+
|
| 141 |
+
epoch_ce_loss = running_ce_loss / dataset_sizes[phase]
|
| 142 |
+
epoch_rmse_loss = running_rmse_loss / dataset_sizes[phase]
|
| 143 |
+
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
| 144 |
+
|
| 145 |
+
print(f'{phase} CE_Loss: {epoch_ce_loss:.4f} RMSE_Loss: {epoch_rmse_loss:.4f} Acc: {epoch_acc:.4f}')
|
| 146 |
+
|
| 147 |
+
# deep copy the model
|
| 148 |
+
if phase == 'val' and epoch_acc > best_acc:
|
| 149 |
+
best_acc = epoch_acc
|
| 150 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
| 151 |
+
#if epoch %2 == 0 and phase == 'val':print(outputs_c, outputs_h)
|
| 152 |
+
print()
|
| 153 |
+
|
| 154 |
+
time_elapsed = time.time() - since
|
| 155 |
+
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
|
| 156 |
+
print(f'Best val Acc: {best_acc:4f}')
|
| 157 |
+
|
| 158 |
+
# load best model weights
|
| 159 |
+
model.load_state_dict(best_model_wts)
|
| 160 |
+
return model
|
| 161 |
+
|
| 162 |
+
def visualize_model(model, device, dataloaders, class_names, num_images=6):
|
| 163 |
+
was_training = model.training
|
| 164 |
+
model.eval()
|
| 165 |
+
images_so_far = 0
|
| 166 |
+
fig = plt.figure()
|
| 167 |
+
|
| 168 |
+
with torch.no_grad():
|
| 169 |
+
for i, (inputs, labels) in enumerate(dataloaders['val']):
|
| 170 |
+
inputs = inputs.to(device)
|
| 171 |
+
labels = labels.to(device)
|
| 172 |
+
|
| 173 |
+
outputs = model(inputs)
|
| 174 |
+
_, preds = torch.max(outputs, 1)
|
| 175 |
+
|
| 176 |
+
for j in range(inputs.size()[0]):
|
| 177 |
+
images_so_far += 1
|
| 178 |
+
ax = plt.subplot(num_images//2, 2, images_so_far)
|
| 179 |
+
ax.axis('off')
|
| 180 |
+
ax.set_title(f'pred: {class_names[preds[j]]}|tar: {class_names[labels[j]]}')
|
| 181 |
+
imshow(inputs.cpu().data[j])
|
| 182 |
+
|
| 183 |
+
if images_so_far == num_images:
|
| 184 |
+
model.train(mode=was_training)
|
| 185 |
+
return
|
| 186 |
+
model.train(mode=was_training)
|
| 187 |
+
|
| 188 |
+
def evaluation(model, epoch, device, dataloaders):
|
| 189 |
+
model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
|
| 190 |
+
model.eval()
|
| 191 |
+
with torch.no_grad():
|
| 192 |
+
for i, (inputs, labels) in enumerate(dataloaders['val']):
|
| 193 |
+
inputs = inputs.to(device)
|
| 194 |
+
labels = labels.to(device)
|
| 195 |
+
|
| 196 |
+
outputs = model(inputs)
|
| 197 |
+
_, preds = torch.max(outputs, 1)
|
| 198 |
+
print(preds)
|
| 199 |
+
|
| 200 |
+
def inference(inp_img, classes = ['big', 'small'], epoch = 6):
|
| 201 |
+
device = torch.device("cpu")
|
| 202 |
+
translator= Translator(to_lang="zh-TW")
|
| 203 |
+
|
| 204 |
+
model = model = CUPredictor()
|
| 205 |
+
model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
|
| 206 |
+
# load image-to-text model
|
| 207 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 208 |
+
model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 209 |
+
model.eval()
|
| 210 |
+
|
| 211 |
+
trans = transforms.Compose([
|
| 212 |
+
transforms.Resize(256),
|
| 213 |
+
transforms.CenterCrop(224),
|
| 214 |
+
transforms.ToTensor(),
|
| 215 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 216 |
+
])
|
| 217 |
+
|
| 218 |
+
image_tensor = trans(inp_img)
|
| 219 |
+
image_tensor = image_tensor.unsqueeze(0)
|
| 220 |
+
with torch.no_grad():
|
| 221 |
+
inputs = image_tensor.to(device)
|
| 222 |
+
outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
|
| 223 |
+
_, preds = torch.max(outputs_c, 1)
|
| 224 |
+
idx = preds.numpy()[0]
|
| 225 |
+
|
| 226 |
+
# unconditional image captioning
|
| 227 |
+
inputs = processor(inp_img, return_tensors="pt")
|
| 228 |
+
out = model_blip.generate(**inputs)
|
| 229 |
+
description = processor.decode(out[0], skip_special_tokens=True)
|
| 230 |
+
description_tw = translator.translate(description)
|
| 231 |
+
return outputs_c, classes[idx], f"{outputs_h.numpy()[0][0]:.2f}", f"{outputs_b.numpy()[0][0]:.2f}", f"{outputs_w.numpy()[0][0]:.2f}", f"{outputs_hi.numpy()[0][0]:.2f}", [description, description_tw]
|
| 232 |
+
|
| 233 |
+
def main(epoch = 15, mode = 'val'):
|
| 234 |
+
cudnn.benchmark = True
|
| 235 |
+
plt.ion() # interactive mode
|
| 236 |
+
model = CUPredictor()
|
| 237 |
+
train_dataset = imgDataset('labels.txt', mode='train', use_processor=False)
|
| 238 |
+
test_dataset = imgDataset('labels.txt', mode='val', use_processor=False)
|
| 239 |
+
dataloaders = {
|
| 240 |
+
"train": DataLoader(train_dataset, batch_size=64, shuffle=True),
|
| 241 |
+
"val": DataLoader(test_dataset, batch_size=64, shuffle=False)
|
| 242 |
+
}
|
| 243 |
+
dataset_sizes = {
|
| 244 |
+
"train": len(train_dataset),
|
| 245 |
+
"val": len(test_dataset)
|
| 246 |
+
}
|
| 247 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 248 |
+
#device = torch.device("cpu")
|
| 249 |
+
model = model.to(device)
|
| 250 |
+
model_conv = train_model(model, device, dataloaders, dataset_sizes, num_epochs=epoch)
|
| 251 |
+
torch.save(model_conv.state_dict(), f'models/model_{epoch}.pt')
|
| 252 |
+
|
| 253 |
+
def divide_class_dir(path):
|
| 254 |
+
file_list = os.listdir(path)
|
| 255 |
+
for img_name in file_list:
|
| 256 |
+
dest_path = os.path.join(path, img_name.split('-')[3])
|
| 257 |
+
if not os.path.exists(dest_path):
|
| 258 |
+
os.mkdir(dest_path) # 建立資料夾
|
| 259 |
+
os.replace(os.path.join(path, img_name), os.path.join(dest_path, img_name))
|
| 260 |
+
|
| 261 |
+
def get_label(types):
|
| 262 |
+
with open('labels.txt', 'w', encoding='utf-8') as f:
|
| 263 |
+
for f_type in types:
|
| 264 |
+
for img_type in CLASS:
|
| 265 |
+
path = os.path.join('images', f_type, img_type)
|
| 266 |
+
file_list = os.listdir(path)
|
| 267 |
+
for file_name in file_list:
|
| 268 |
+
file_name_list = file_name.split('-')
|
| 269 |
+
f.write(" ".join([f_type, file_name, img_type, file_name_list[4].split('_')[0], '\n']))
|
| 270 |
+
|
| 271 |
+
if __name__ == "__main__":
|
| 272 |
+
|
| 273 |
+
CLASS = ['big', 'small']
|
| 274 |
+
mode = 'train'
|
| 275 |
+
get_label(['train', 'val'])
|
| 276 |
+
epoch = 7
|
| 277 |
+
#main(epoch, mode = mode)
|
| 278 |
+
|
| 279 |
+
outputs, preds, heights, bust, waist, hips, description = inference('images/test/lin.png', CLASS, epoch=epoch)
|
| 280 |
+
print(outputs, preds, heights, bust, waist, hips)
|
| 281 |
+
#print(CUPredictor())
|
| 282 |
+
#divide_class_dir('./images/train_all')
|
| 283 |
+
#divide_class_dir('./images/val_all')
|
| 284 |
+
''''''
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
translate
|
| 4 |
+
torchvision
|
| 5 |
+
scikit-learn
|
| 6 |
+
pandas
|
| 7 |
+
numpy
|