Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import json
|
|
@@ -21,7 +22,6 @@ def normalize_data(data):
|
|
| 21 |
df_test_value = (data - scaler["mean"]) / scaler["std"]
|
| 22 |
return df_test_value
|
| 23 |
|
| 24 |
-
|
| 25 |
def plot_test_data(df_test_value):
|
| 26 |
fig, ax = plt.subplots(figsize=(12, 6))
|
| 27 |
df_test_value.plot(legend=False, ax=ax)
|
|
@@ -30,13 +30,10 @@ def plot_test_data(df_test_value):
|
|
| 30 |
ax.set_title("Input Test Data")
|
| 31 |
return fig
|
| 32 |
|
| 33 |
-
|
| 34 |
def get_anomalies(df_test_value):
|
| 35 |
# Create sequences from test values.
|
| 36 |
x_test = create_sequences(df_test_value.values)
|
| 37 |
-
|
| 38 |
-
# Load the pre-trained model.
|
| 39 |
-
model = load_pretrained_model()
|
| 40 |
|
| 41 |
# Get test MAE loss.
|
| 42 |
x_test_pred = model.predict(x_test)
|
|
@@ -47,12 +44,11 @@ def get_anomalies(df_test_value):
|
|
| 47 |
anomalies = test_mae_loss > scaler["threshold"]
|
| 48 |
return anomalies
|
| 49 |
|
| 50 |
-
|
| 51 |
def plot_anomalies(df_test_value, data, anomalies):
|
| 52 |
# data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
|
| 53 |
anomalous_data_indices = []
|
| 54 |
for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1):
|
| 55 |
-
if np.all(anomalies[data_idx -
|
| 56 |
anomalous_data_indices.append(data_idx)
|
| 57 |
df_subset = data.iloc[anomalous_data_indices]
|
| 58 |
fig, ax = plt.subplots(figsize=(12, 6))
|
|
@@ -62,24 +58,18 @@ def plot_anomalies(df_test_value, data, anomalies):
|
|
| 62 |
ax.set_ylabel("Value")
|
| 63 |
ax.set_title("Anomalous Data Points")
|
| 64 |
return fig
|
| 65 |
-
|
| 66 |
-
|
| 67 |
def master(file):
|
| 68 |
-
#
|
| 69 |
data = pd.read_csv(file, parse_dates=True, index_col="timestamp")
|
| 70 |
df_test_value = normalize_data(data)
|
| 71 |
-
|
| 72 |
-
# Plot input test data
|
| 73 |
plot1 = plot_test_data(df_test_value)
|
| 74 |
-
|
| 75 |
-
# Predict anomalies
|
| 76 |
anomalies = get_anomalies(df_test_value)
|
| 77 |
-
|
| 78 |
-
# Plot anomalous data points
|
| 79 |
plot2 = plot_anomalies(df_test_value, data, anomalies)
|
| 80 |
-
|
| 81 |
-
return plot1, plot2
|
| 82 |
-
|
| 83 |
|
| 84 |
outputs = gr.outputs.Image()
|
| 85 |
|
|
@@ -92,5 +82,4 @@ iface = gr.Interface(
|
|
| 92 |
description="Anomaly detection of timeseries data."
|
| 93 |
)
|
| 94 |
|
| 95 |
-
iface.launch()
|
| 96 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import from_pretrained_keras
|
| 3 |
import pandas as pd
|
| 4 |
import numpy as np
|
| 5 |
import json
|
|
|
|
| 22 |
df_test_value = (data - scaler["mean"]) / scaler["std"]
|
| 23 |
return df_test_value
|
| 24 |
|
|
|
|
| 25 |
def plot_test_data(df_test_value):
|
| 26 |
fig, ax = plt.subplots(figsize=(12, 6))
|
| 27 |
df_test_value.plot(legend=False, ax=ax)
|
|
|
|
| 30 |
ax.set_title("Input Test Data")
|
| 31 |
return fig
|
| 32 |
|
|
|
|
| 33 |
def get_anomalies(df_test_value):
|
| 34 |
# Create sequences from test values.
|
| 35 |
x_test = create_sequences(df_test_value.values)
|
| 36 |
+
model = from_pretrained_keras("keras-io/timeseries-anomaly-detection")
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Get test MAE loss.
|
| 39 |
x_test_pred = model.predict(x_test)
|
|
|
|
| 44 |
anomalies = test_mae_loss > scaler["threshold"]
|
| 45 |
return anomalies
|
| 46 |
|
|
|
|
| 47 |
def plot_anomalies(df_test_value, data, anomalies):
|
| 48 |
# data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
|
| 49 |
anomalous_data_indices = []
|
| 50 |
for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1):
|
| 51 |
+
if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):
|
| 52 |
anomalous_data_indices.append(data_idx)
|
| 53 |
df_subset = data.iloc[anomalous_data_indices]
|
| 54 |
fig, ax = plt.subplots(figsize=(12, 6))
|
|
|
|
| 58 |
ax.set_ylabel("Value")
|
| 59 |
ax.set_title("Anomalous Data Points")
|
| 60 |
return fig
|
| 61 |
+
|
|
|
|
| 62 |
def master(file):
|
| 63 |
+
# read file
|
| 64 |
data = pd.read_csv(file, parse_dates=True, index_col="timestamp")
|
| 65 |
df_test_value = normalize_data(data)
|
| 66 |
+
# plot input test data
|
|
|
|
| 67 |
plot1 = plot_test_data(df_test_value)
|
| 68 |
+
# predict
|
|
|
|
| 69 |
anomalies = get_anomalies(df_test_value)
|
| 70 |
+
#plot anomalous data points
|
|
|
|
| 71 |
plot2 = plot_anomalies(df_test_value, data, anomalies)
|
| 72 |
+
return plot2
|
|
|
|
|
|
|
| 73 |
|
| 74 |
outputs = gr.outputs.Image()
|
| 75 |
|
|
|
|
| 82 |
description="Anomaly detection of timeseries data."
|
| 83 |
)
|
| 84 |
|
| 85 |
+
iface.launch()
|
|
|