Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,8 +23,11 @@ def normalize_data(data):
|
|
| 23 |
return df_test_value
|
| 24 |
|
| 25 |
def plot_test_data(df_test_value):
|
| 26 |
-
fig, ax = plt.subplots()
|
| 27 |
df_test_value.plot(legend=False, ax=ax)
|
|
|
|
|
|
|
|
|
|
| 28 |
return fig
|
| 29 |
|
| 30 |
def get_anomalies(df_test_value):
|
|
@@ -48,9 +51,12 @@ def plot_anomalies(df_test_value, data, anomalies):
|
|
| 48 |
if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):
|
| 49 |
anomalous_data_indices.append(data_idx)
|
| 50 |
df_subset = data.iloc[anomalous_data_indices]
|
| 51 |
-
fig, ax = plt.subplots()
|
| 52 |
data.plot(legend=False, ax=ax)
|
| 53 |
df_subset.plot(legend=False, ax=ax, color="r")
|
|
|
|
|
|
|
|
|
|
| 54 |
return fig
|
| 55 |
|
| 56 |
def master(file):
|
|
@@ -65,13 +71,13 @@ def master(file):
|
|
| 65 |
plot2 = plot_anomalies(df_test_value, data, anomalies)
|
| 66 |
return plot2
|
| 67 |
|
| 68 |
-
outputs = gr.
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
gr.inputs.File(label="
|
| 73 |
-
outputs=outputs,
|
| 74 |
-
examples=["art_daily_jumpsup.csv"], title="Timeseries Anomaly Detection Using an Autoencoder",
|
| 75 |
description = "Anomaly detection of timeseries data.",
|
| 76 |
article = "Space by: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a> <br> Keras Example by <a href=\"https://github.com/pavithrasv/\"> Pavithra Vijay</a>")
|
| 77 |
|
|
|
|
| 23 |
return df_test_value
|
| 24 |
|
| 25 |
def plot_test_data(df_test_value):
|
| 26 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 27 |
df_test_value.plot(legend=False, ax=ax)
|
| 28 |
+
ax.set_xlabel("Time")
|
| 29 |
+
ax.set_ylabel("Value")
|
| 30 |
+
ax.set_title("Input Test Data")
|
| 31 |
return fig
|
| 32 |
|
| 33 |
def get_anomalies(df_test_value):
|
|
|
|
| 51 |
if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):
|
| 52 |
anomalous_data_indices.append(data_idx)
|
| 53 |
df_subset = data.iloc[anomalous_data_indices]
|
| 54 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 55 |
data.plot(legend=False, ax=ax)
|
| 56 |
df_subset.plot(legend=False, ax=ax, color="r")
|
| 57 |
+
ax.set_xlabel("Time")
|
| 58 |
+
ax.set_ylabel("Value")
|
| 59 |
+
ax.set_title("Anomalous Data Points")
|
| 60 |
return fig
|
| 61 |
|
| 62 |
def master(file):
|
|
|
|
| 71 |
plot2 = plot_anomalies(df_test_value, data, anomalies)
|
| 72 |
return plot2
|
| 73 |
|
| 74 |
+
outputs = gr.outputs.Image()
|
| 75 |
|
| 76 |
+
iface = gr.Interface(
|
| 77 |
+
fn=master,
|
| 78 |
+
inputs=gr.inputs.File(label="CSV File"),
|
| 79 |
+
outputs=outputs,
|
| 80 |
+
examples=["art_daily_jumpsup.csv"], title="Timeseries Anomaly Detection Using an Autoencoder",
|
| 81 |
description = "Anomaly detection of timeseries data.",
|
| 82 |
article = "Space by: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a> <br> Keras Example by <a href=\"https://github.com/pavithrasv/\"> Pavithra Vijay</a>")
|
| 83 |
|