Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,053 Bytes
dc155d4 84712e3 3a9a5d3 e75a609 dc155d4 67e379c ab273c0 76bc6e5 ab273c0 bd1db85 dc155d4 1f4a684 dc155d4 a3f2efe dc155d4 e1fdb35 76bc6e5 67e379c 1513fb8 99652ad dc155d4 3bab44d 67e379c e75a609 bd1db85 e75a609 dc155d4 76bc6e5 dc155d4 f84d1c1 dc155d4 1513fb8 76bc6e5 bd1db85 76bc6e5 bd1db85 76bc6e5 bd1db85 1513fb8 bd1db85 1513fb8 bd1db85 76bc6e5 bd1db85 1513fb8 bd1db85 dc155d4 1513fb8 e75a609 1513fb8 dc155d4 4887278 dc155d4 1513fb8 dc155d4 6fc9eeb 1513fb8 67e379c dc155d4 e75a609 1513fb8 e75a609 affb9ad dc155d4 1513fb8 643882e 1513fb8 67e379c 1513fb8 3a9a5d3 67e379c d409ae5 67e379c 1513fb8 67e379c 3a9a5d3 1513fb8 dc155d4 1513fb8 dc155d4 1513fb8 dc155d4 f84d1c1 1513fb8 e1fdb35 67e379c dc155d4 a25b815 1513fb8 dc155d4 76bc6e5 a25b815 1513fb8 dc155d4 1513fb8 dc155d4 a87b08e 1513fb8 dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 e1fdb35 732e39d 67e379c dc155d4 1513fb8 dc155d4 54f2e32 1513fb8 dc155d4 1513fb8 76bc6e5 dc155d4 1513fb8 e75a609 dc155d4 76bc6e5 dc155d4 1513fb8 67e379c 1513fb8 dc155d4 e1fdb35 dc155d4 54f2e32 dc155d4 1513fb8 99652ad f84d1c1 dc155d4 bd1db85 dc155d4 76bc6e5 e1fdb35 1513fb8 dc155d4 e1fdb35 8c42839 dc155d4 ed7a43b bb98bd0 67e379c dc155d4 54f2e32 1513fb8 dc155d4 1513fb8 dc155d4 e1fdb35 67e379c dc155d4 54f2e32 dc155d4 99652ad 53e719a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
import copy
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig
import aoti
from diffusers import (
FlowMatchEulerDiscreteScheduler,
SASolverScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
UniPCMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
)
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 160
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
SCHEDULER_MAP = {
"FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler,
"SASolver": SASolverScheduler,
"DEISMultistep": DEISMultistepScheduler,
"DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler,
"UniPCMultistep": UniPCMultistepScheduler,
"DPMSolverMultistep": DPMSolverMultistepScheduler,
"DPMSolverSinglestep": DPMSolverSinglestepScheduler,
}
pipe = WanImageToVideoPipeline.from_pretrained(
"TestOrganizationPleaseIgnore/WAMU_v2_WAN2.2_I2V_LIGHTNING",
torch_dtype=torch.bfloat16,
).to('cuda')
original_scheduler = copy.deepcopy(pipe.scheduler)
print(original_scheduler)
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "deformed , wrong body shapes , wrong body position , cut off head , double girls worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch) , tooth, dull, blurry, watermark, low quality, (flash:1.2) , bra, hat, tattoo, snow, black and white"
def resize_image(image: Image.Image) -> Image.Image:
"""
Resizes an image to fit within the model's constraints, preserving aspect ratio as much as possible.
"""
width, height = image.size
# Handle square case
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
# Very wide image -> crop width to fit 832x480 aspect ratio
target_w, target_h = MAX_DIM, MIN_DIM
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
# Very tall image -> crop height to fit 480x832 aspect ratio
target_w, target_h = MIN_DIM, MAX_DIM
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
else:
if width > height: # Landscape
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else: # Portrait
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
def resize_and_crop_to_match(target_image, reference_image):
"""Resizes and center-crops the target image to match the reference image's dimensions."""
ref_width, ref_height = reference_image.size
target_width, target_height = target_image.size
scale = max(ref_width / target_width, ref_height / target_height)
new_width, new_height = int(target_width * scale), int(target_height * scale)
resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
return resized.crop((left, top, left + ref_width, top + ref_height))
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(
int(round(duration_seconds * FIXED_FPS)),
MIN_FRAMES_MODEL,
MAX_FRAMES_MODEL,
))
def get_inference_duration(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler_name,
flow_shift,
progress
):
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
BASE_STEP_DURATION = 15
width, height = resized_image.size
factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * factor ** 1.5
return 5 + int(steps) * step_duration
#@spaces.GPU(duration=get_inference_duration)
@spaces.GPU()
def run_inference(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler_name,
flow_shift,
progress=gr.Progress(track_tqdm=True),
):
scheduler_class = SCHEDULER_MAP.get(scheduler_name)
if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"):
config = copy.deepcopy(original_scheduler.config)
if scheduler_class == FlowMatchEulerDiscreteScheduler:
config['shift'] = flow_shift
else:
config['flow_shift'] = flow_shift
pipe.scheduler = scheduler_class.from_config(config)
result = pipe(
image=resized_image,
last_image=processed_last_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
pipe.scheduler = original_scheduler
return result
def generate_video(
input_image,
last_image,
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=5,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
quality=5,
scheduler="UniPCMultistep",
flow_shift=6.0,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA.
This function takes an input image and generates a video animation based on the provided
prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA
for fast generation in 4-8 steps.
Args:
input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
last_image (PIL.Image, optional): The optional last image for the video.
prompt (str): Text prompt describing the desired animation or motion.
steps (int, optional): Number of inference steps. More steps = higher quality but slower.
Defaults to 4. Range: 1-30.
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
Defaults to default_negative_prompt (contains unwanted visual artifacts).
duration_seconds (float, optional): Duration of the generated video in seconds.
Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
seed (int, optional): Random seed for reproducible results. Defaults to 42.
Range: 0 to MAX_SEED (2147483647).
randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
Defaults to False.
quality (float, optional): Video output quality. Default is 5. Uses variable bit rate.
Highest quality is 10, lowest is 1.
scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep".
flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
tuple: A tuple containing:
- video_path (str): Path for the video component.
- video_path (str): Path for the file download component. Attempt to avoid reconversion in video component.
- current_seed (int): The seed used for generation.
Raises:
gr.Error: If input_image is None (no image uploaded).
Note:
- Frame count is calculated as duration_seconds * FIXED_FPS (24)
- Output dimensions are adjusted to be multiples of MOD_VALUE (32)
- The function uses GPU acceleration via the @spaces.GPU decorator
- Generation time varies based on steps and duration (see get_duration function)
"""
if input_image is None:
raise gr.Error("Please upload an input image.")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
processed_last_image = None
if last_image:
processed_last_image = resize_and_crop_to_match(last_image, resized_image)
output_frames_list = run_inference(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler,
flow_shift,
progress,
)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS, quality=quality)
return video_path, video_path, current_seed
with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(12800, 12800)) as demo:
gr.Markdown("# ❤️ Aibabe V2 - Wan 2.2 I2V (14B) 🐢")
gr.Markdown("## ℹ️ ** This app is free so performance may vary.")
gr.Markdown('# Join us , and buy tokens to generate advanced Videos 5-10 seconds')
gr.Markdown("This app only shows you whats possible, keep it at around 3-5 seconds to run")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
with gr.Accordion("Advanced Settings", open=False):
last_image_component = gr.Image(type="pil", label="Last Image (Optional)")
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3)
quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality")
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
scheduler_dropdown = gr.Dropdown(
label="Scheduler",
choices=list(SCHEDULER_MAP.keys()),
value="UniPCMultistep",
info="Select a custom scheduler."
)
flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
file_output = gr.File(label="Download Video")
ui_inputs = [
input_image_component, last_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
quality_slider, scheduler_dropdown, flow_shift_slider,
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, file_output, seed_input])
if __name__ == "__main__":
demo.queue().launch(
mcp_server=True,
ssr_mode=False,
show_error=True,
) |