File size: 14,053 Bytes
dc155d4
 
 
 
 
 
 
 
 
 
84712e3
3a9a5d3
e75a609
 
 
 
 
 
dc155d4
67e379c
 
 
 
 
 
 
 
 
 
ab273c0
76bc6e5
ab273c0
bd1db85
 
 
 
 
dc155d4
 
1f4a684
dc155d4
a3f2efe
dc155d4
e1fdb35
 
76bc6e5
67e379c
 
 
 
 
 
 
 
 
 
1513fb8
99652ad
dc155d4
 
3bab44d
67e379c
 
e75a609
 
 
bd1db85
e75a609
 
dc155d4
76bc6e5
dc155d4
f84d1c1
dc155d4
1513fb8
76bc6e5
bd1db85
 
 
 
76bc6e5
bd1db85
 
 
76bc6e5
bd1db85
1513fb8
 
 
bd1db85
 
1513fb8
bd1db85
 
 
 
 
 
 
 
 
 
 
 
76bc6e5
bd1db85
 
 
 
 
 
 
 
 
 
 
 
1513fb8
bd1db85
 
dc155d4
1513fb8
 
 
 
 
 
 
 
 
 
 
e75a609
 
 
 
 
 
 
 
1513fb8
 
 
dc155d4
4887278
dc155d4
1513fb8
dc155d4
6fc9eeb
1513fb8
67e379c
 
 
dc155d4
e75a609
 
1513fb8
 
e75a609
affb9ad
dc155d4
1513fb8
643882e
 
1513fb8
 
 
 
 
 
 
 
 
 
67e379c
 
1513fb8
 
3a9a5d3
67e379c
d409ae5
67e379c
 
 
 
 
 
 
 
1513fb8
 
 
 
 
 
 
 
 
 
 
 
 
67e379c
 
3a9a5d3
1513fb8
dc155d4
 
1513fb8
dc155d4
1513fb8
dc155d4
f84d1c1
1513fb8
 
 
 
e1fdb35
67e379c
 
dc155d4
 
 
a25b815
1513fb8
dc155d4
76bc6e5
a25b815
1513fb8
dc155d4
 
1513fb8
dc155d4
a87b08e
 
1513fb8
dc155d4
 
76bc6e5
dc155d4
76bc6e5
 
 
dc155d4
 
 
 
e1fdb35
732e39d
67e379c
 
dc155d4
1513fb8
dc155d4
 
54f2e32
 
 
1513fb8
dc155d4
 
1513fb8
76bc6e5
 
 
 
 
dc155d4
 
 
1513fb8
e75a609
dc155d4
76bc6e5
dc155d4
1513fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
67e379c
 
1513fb8
 
dc155d4
 
 
 
e1fdb35
dc155d4
54f2e32
dc155d4
1513fb8
99652ad
f84d1c1
 
 
 
dc155d4
 
bd1db85
dc155d4
76bc6e5
e1fdb35
1513fb8
dc155d4
e1fdb35
 
8c42839
dc155d4
 
ed7a43b
bb98bd0
67e379c
 
 
 
 
 
 
dc155d4
 
 
 
54f2e32
1513fb8
dc155d4
1513fb8
dc155d4
e1fdb35
67e379c
dc155d4
54f2e32
dc155d4
 
 
99652ad
 
 
 
53e719a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
import copy

from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig

import aoti

from diffusers import (
    FlowMatchEulerDiscreteScheduler,
    SASolverScheduler,
    DEISMultistepScheduler,
    DPMSolverMultistepInverseScheduler,
    UniPCMultistepScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
)


MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"

MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16

MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 160

MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)

SCHEDULER_MAP = {
    "FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler,
    "SASolver": SASolverScheduler,
    "DEISMultistep": DEISMultistepScheduler,
    "DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler,
    "UniPCMultistep": UniPCMultistepScheduler,
    "DPMSolverMultistep": DPMSolverMultistepScheduler,
    "DPMSolverSinglestep": DPMSolverSinglestepScheduler,
}

pipe = WanImageToVideoPipeline.from_pretrained(
    "TestOrganizationPleaseIgnore/WAMU_v2_WAN2.2_I2V_LIGHTNING",
    torch_dtype=torch.bfloat16,
).to('cuda')
original_scheduler = copy.deepcopy(pipe.scheduler)
print(original_scheduler)

quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())

aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')


default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "deformed , wrong body shapes , wrong body position , cut off head , double girls worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch) , tooth, dull, blurry, watermark, low quality, (flash:1.2) , bra, hat, tattoo, snow, black and white"


def resize_image(image: Image.Image) -> Image.Image:
    """
    Resizes an image to fit within the model's constraints, preserving aspect ratio as much as possible.
    """
    width, height = image.size

    # Handle square case
    if width == height:
        return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)

    aspect_ratio = width / height

    MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
    MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM

    image_to_resize = image

    if aspect_ratio > MAX_ASPECT_RATIO:
        # Very wide image -> crop width to fit 832x480 aspect ratio
        target_w, target_h = MAX_DIM, MIN_DIM
        crop_width = int(round(height * MAX_ASPECT_RATIO))
        left = (width - crop_width) // 2
        image_to_resize = image.crop((left, 0, left + crop_width, height))
    elif aspect_ratio < MIN_ASPECT_RATIO:
        # Very tall image -> crop height to fit 480x832 aspect ratio
        target_w, target_h = MIN_DIM, MAX_DIM
        crop_height = int(round(width / MIN_ASPECT_RATIO))
        top = (height - crop_height) // 2
        image_to_resize = image.crop((0, top, width, top + crop_height))
    else:
        if width > height:  # Landscape
            target_w = MAX_DIM
            target_h = int(round(target_w / aspect_ratio))
        else:  # Portrait
            target_h = MAX_DIM
            target_w = int(round(target_h * aspect_ratio))

    final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
    final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF

    final_w = max(MIN_DIM, min(MAX_DIM, final_w))
    final_h = max(MIN_DIM, min(MAX_DIM, final_h))

    return image_to_resize.resize((final_w, final_h), Image.LANCZOS)


def resize_and_crop_to_match(target_image, reference_image):
    """Resizes and center-crops the target image to match the reference image's dimensions."""
    ref_width, ref_height = reference_image.size
    target_width, target_height = target_image.size
    scale = max(ref_width / target_width, ref_height / target_height)
    new_width, new_height = int(target_width * scale), int(target_height * scale)
    resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
    left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
    return resized.crop((left, top, left + ref_width, top + ref_height))


def get_num_frames(duration_seconds: float):
    return 1 + int(np.clip(
        int(round(duration_seconds * FIXED_FPS)),
        MIN_FRAMES_MODEL,
        MAX_FRAMES_MODEL,
    ))


def get_inference_duration(
    resized_image,
    processed_last_image,
    prompt,
    steps,
    negative_prompt,
    num_frames,
    guidance_scale,
    guidance_scale_2,
    current_seed,
    scheduler_name,
    flow_shift,
    progress
):
    BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
    BASE_STEP_DURATION = 15
    width, height = resized_image.size
    factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
    step_duration = BASE_STEP_DURATION * factor ** 1.5
    return 5 + int(steps) * step_duration


#@spaces.GPU(duration=get_inference_duration)
@spaces.GPU()
def run_inference(
    resized_image,
    processed_last_image,
    prompt,
    steps,
    negative_prompt,
    num_frames,
    guidance_scale,
    guidance_scale_2,
    current_seed,
    scheduler_name,
    flow_shift,
    progress=gr.Progress(track_tqdm=True),
):

    scheduler_class = SCHEDULER_MAP.get(scheduler_name)
    if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"):
        config = copy.deepcopy(original_scheduler.config)
        if scheduler_class == FlowMatchEulerDiscreteScheduler:
            config['shift'] = flow_shift
        else:
            config['flow_shift'] = flow_shift
        pipe.scheduler = scheduler_class.from_config(config)

    result = pipe(
        image=resized_image,
        last_image=processed_last_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized_image.height,
        width=resized_image.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=int(steps),
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
    ).frames[0]

    pipe.scheduler = original_scheduler
    return result


def generate_video(
    input_image,
    last_image,
    prompt,
    steps=4,
    negative_prompt=default_negative_prompt,
    duration_seconds=5,
    guidance_scale=1,
    guidance_scale_2=1,
    seed=42,
    randomize_seed=False,
    quality=5,
    scheduler="UniPCMultistep",
    flow_shift=6.0,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA.

    This function takes an input image and generates a video animation based on the provided
    prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA
    for fast generation in 4-8 steps.

    Args:
        input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
        last_image (PIL.Image, optional): The optional last image for the video.
        prompt (str): Text prompt describing the desired animation or motion.
        steps (int, optional): Number of inference steps. More steps = higher quality but slower.
            Defaults to 4. Range: 1-30.
        negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
            Defaults to default_negative_prompt (contains unwanted visual artifacts).
        duration_seconds (float, optional): Duration of the generated video in seconds.
            Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
        guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        seed (int, optional): Random seed for reproducible results. Defaults to 42.
            Range: 0 to MAX_SEED (2147483647).
        randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
            Defaults to False.
        quality (float, optional): Video output quality. Default is 5. Uses variable bit rate.
            Highest quality is 10, lowest is 1.
        scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep".
        flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0.
        progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).

    Returns:
        tuple: A tuple containing:
            - video_path (str): Path for the video component.
            - video_path (str): Path for the file download component. Attempt to avoid reconversion in video component.
            - current_seed (int): The seed used for generation.

    Raises:
        gr.Error: If input_image is None (no image uploaded).

    Note:
        - Frame count is calculated as duration_seconds * FIXED_FPS (24)
        - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
        - The function uses GPU acceleration via the @spaces.GPU decorator
        - Generation time varies based on steps and duration (see get_duration function)
    """
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    num_frames = get_num_frames(duration_seconds)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = resize_image(input_image)

    processed_last_image = None
    if last_image:
        processed_last_image = resize_and_crop_to_match(last_image, resized_image)

    output_frames_list = run_inference(
        resized_image,
        processed_last_image,
        prompt,
        steps,
        negative_prompt,
        num_frames,
        guidance_scale,
        guidance_scale_2,
        current_seed,
        scheduler,
        flow_shift,
        progress,
    )

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=FIXED_FPS, quality=quality)

    return video_path, video_path, current_seed


with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(12800, 12800)) as demo:
    gr.Markdown("# ❤️ Aibabe V2 - Wan 2.2 I2V (14B) 🐢")
    gr.Markdown("## ℹ️ ** This app is free so performance may vary.")
    gr.Markdown('# Join us , and buy tokens to generate advanced Videos 5-10 seconds')
    gr.Markdown("This app only shows you whats possible, keep it at around 3-5 seconds to run")
    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")

            with gr.Accordion("Advanced Settings", open=False):
                last_image_component = gr.Image(type="pil", label="Last Image (Optional)")
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3)
                quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality")
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
                scheduler_dropdown = gr.Dropdown(
                    label="Scheduler",
                    choices=list(SCHEDULER_MAP.keys()),
                    value="UniPCMultistep",
                    info="Select a custom scheduler."
                )
                flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift")

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
            file_output = gr.File(label="Download Video")

    ui_inputs = [
        input_image_component, last_image_component, prompt_input, steps_slider,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
        quality_slider, scheduler_dropdown, flow_shift_slider,
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, file_output, seed_input])


if __name__ == "__main__":
    demo.queue().launch(
        mcp_server=True,
        ssr_mode=False,
        show_error=True,
        )