Spaces:
Running
Running
File size: 10,175 Bytes
d247864 1922dbd c690006 1922dbd c690006 1922dbd c690006 1922dbd 3139749 1922dbd d247864 1922dbd a6398e4 1922dbd d247864 1922dbd c690006 3bacbf8 c690006 3bacbf8 c690006 3bacbf8 c690006 3bacbf8 c690006 3139749 c690006 d247864 c690006 1922dbd c690006 1922dbd 3139749 1922dbd c690006 3bacbf8 c690006 3bacbf8 c690006 3bacbf8 c690006 3139749 c690006 3139749 1922dbd c690006 3139749 c690006 3139749 c690006 1922dbd c690006 1922dbd c690006 a6398e4 c690006 a6398e4 c690006 a6398e4 c690006 a6398e4 c690006 3139749 f1e4e5b 3139749 c690006 a6398e4 c690006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
"""Magentic-based orchestrator for DeepCritical.
NOTE: Magentic mode currently requires OpenAI API keys. The MagenticBuilder's
standard manager uses OpenAIChatClient. Anthropic support may be added when
the agent_framework provides an AnthropicChatClient.
"""
from collections.abc import AsyncGenerator
from typing import TYPE_CHECKING, Any
import structlog
if TYPE_CHECKING:
from src.services.embeddings import EmbeddingService
from agent_framework import (
MagenticAgentDeltaEvent,
MagenticAgentMessageEvent,
MagenticBuilder,
MagenticFinalResultEvent,
MagenticOrchestratorMessageEvent,
WorkflowOutputEvent,
)
from agent_framework.openai import OpenAIChatClient
from src.agents.hypothesis_agent import HypothesisAgent
from src.agents.judge_agent import JudgeAgent
from src.agents.report_agent import ReportAgent
from src.agents.search_agent import SearchAgent
from src.orchestrator import JudgeHandlerProtocol, SearchHandlerProtocol
from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import AgentEvent, Evidence
logger = structlog.get_logger()
def _truncate(text: str, max_len: int = 100) -> str:
"""Truncate text with ellipsis only if needed."""
return f"{text[:max_len]}..." if len(text) > max_len else text
class MagenticOrchestrator:
"""
Magentic-based orchestrator - same API as Orchestrator.
Uses Microsoft Agent Framework's MagenticBuilder for multi-agent coordination.
Note:
Magentic mode requires OPENAI_API_KEY. The MagenticBuilder's standard
manager currently only supports OpenAI. If you have only an Anthropic
key, use the "simple" orchestrator mode instead.
"""
def __init__(
self,
search_handler: SearchHandlerProtocol,
judge_handler: JudgeHandlerProtocol,
max_rounds: int = 10,
) -> None:
self._search_handler = search_handler
self._judge_handler = judge_handler
self._max_rounds = max_rounds
self._evidence_store: dict[str, list[Evidence]] = {"current": []}
def _init_embedding_service(self) -> "EmbeddingService | None":
"""Initialize embedding service if available."""
try:
from src.services.embeddings import get_embedding_service
service = get_embedding_service()
logger.info("Embedding service enabled")
return service
except ImportError:
logger.info("Embedding service not available (dependencies missing)")
except Exception as e:
logger.warning("Failed to initialize embedding service", error=str(e))
return None
def _build_workflow(
self,
search_agent: SearchAgent,
hypothesis_agent: HypothesisAgent,
judge_agent: JudgeAgent,
report_agent: ReportAgent,
) -> Any:
"""Build the Magentic workflow with participants."""
if not settings.openai_api_key:
raise ConfigurationError(
"Magentic mode requires OPENAI_API_KEY. "
"Set the key or use mode='simple' with Anthropic."
)
return (
MagenticBuilder()
.participants(
searcher=search_agent,
hypothesizer=hypothesis_agent,
judge=judge_agent,
reporter=report_agent,
)
.with_standard_manager(
chat_client=OpenAIChatClient(
model_id=settings.openai_model, api_key=settings.openai_api_key
),
max_round_count=self._max_rounds,
max_stall_count=3,
max_reset_count=2,
)
.build()
)
def _format_task(self, query: str, has_embeddings: bool) -> str:
"""Format the task instruction for the manager."""
semantic_note = ""
if has_embeddings:
semantic_note = """
The system has semantic search enabled. When evidence is found:
1. Related concepts will be automatically surfaced
2. Duplicates are removed by meaning, not just URL
3. Use the surfaced related concepts to refine searches
"""
return f"""Research drug repurposing opportunities for: {query}
{semantic_note}
Workflow:
1. SearcherAgent: Find initial evidence from PubMed and web. SEND ONLY A SIMPLE KEYWORD QUERY.
2. HypothesisAgent: Generate mechanistic hypotheses (Drug -> Target -> Pathway -> Effect).
3. SearcherAgent: Use hypothesis-suggested queries for targeted search.
4. JudgeAgent: Evaluate if evidence supports hypotheses.
5. If sufficient -> ReportAgent: Generate structured research report.
6. If not sufficient -> Repeat from step 1 with refined queries.
Focus on:
- Identifying specific molecular targets
- Understanding mechanism of action
- Finding supporting/contradicting evidence for hypotheses
The final output should be a complete research report with:
- Executive summary
- Methodology
- Hypotheses tested
- Mechanistic and clinical findings
- Drug candidates
- Limitations
- Conclusion with references
"""
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
"""
Run the Magentic workflow - same API as simple Orchestrator.
Yields AgentEvent objects for real-time UI updates.
"""
logger.info("Starting Magentic orchestrator", query=query)
yield AgentEvent(
type="started",
message=f"Starting research (Magentic mode): {query}",
iteration=0,
)
# Initialize services and agents
embedding_service = self._init_embedding_service()
search_agent = SearchAgent(
self._search_handler, self._evidence_store, embedding_service=embedding_service
)
judge_agent = JudgeAgent(self._judge_handler, self._evidence_store)
hypothesis_agent = HypothesisAgent(
self._evidence_store, embedding_service=embedding_service
)
report_agent = ReportAgent(self._evidence_store, embedding_service=embedding_service)
# Build workflow and task
workflow = self._build_workflow(search_agent, hypothesis_agent, judge_agent, report_agent)
task = self._format_task(query, embedding_service is not None)
iteration = 0
try:
async for event in workflow.run_stream(task):
agent_event = self._process_event(event, iteration)
if agent_event:
if isinstance(event, MagenticAgentMessageEvent):
iteration += 1
yield agent_event
except Exception as e:
logger.error("Magentic workflow failed", error=str(e))
yield AgentEvent(
type="error",
message=f"Workflow error: {e!s}",
iteration=iteration,
)
def _process_event(self, event: Any, iteration: int) -> AgentEvent | None:
"""Process a workflow event and return an AgentEvent if applicable."""
if isinstance(event, MagenticOrchestratorMessageEvent):
message_text = (
event.message.text if event.message and hasattr(event.message, "text") else ""
)
kind = getattr(event, "kind", "manager")
if message_text:
return AgentEvent(
type="judging",
message=f"Manager ({kind}): {_truncate(message_text)}",
iteration=iteration,
)
elif isinstance(event, MagenticAgentMessageEvent):
agent_name = event.agent_id or "unknown"
msg_text = (
event.message.text if event.message and hasattr(event.message, "text") else ""
)
return self._agent_message_event(agent_name, msg_text, iteration + 1)
elif isinstance(event, MagenticFinalResultEvent):
final_text = (
event.message.text
if event.message and hasattr(event.message, "text")
else "No result"
)
return AgentEvent(
type="complete",
message=final_text,
data={"iterations": iteration},
iteration=iteration,
)
elif isinstance(event, MagenticAgentDeltaEvent):
if event.text:
return AgentEvent(
type="streaming",
message=event.text,
data={"agent_id": event.agent_id},
iteration=iteration,
)
elif isinstance(event, WorkflowOutputEvent):
if event.data:
return AgentEvent(
type="complete",
message=str(event.data),
iteration=iteration,
)
return None
def _agent_message_event(self, agent_name: str, msg_text: str, iteration: int) -> AgentEvent:
"""Create an AgentEvent for an agent message."""
if "search" in agent_name.lower():
return AgentEvent(
type="search_complete",
message=f"Search agent: {_truncate(msg_text)}",
iteration=iteration,
)
elif "hypothes" in agent_name.lower():
return AgentEvent(
type="hypothesizing",
message=f"Hypothesis agent: {_truncate(msg_text)}",
iteration=iteration,
)
elif "judge" in agent_name.lower():
return AgentEvent(
type="judge_complete",
message=f"Judge agent: {_truncate(msg_text)}",
iteration=iteration,
)
elif "report" in agent_name.lower():
return AgentEvent(
type="synthesizing",
message=f"Report agent: {_truncate(msg_text)}" if msg_text else "Report generated.",
iteration=iteration,
)
return AgentEvent(
type="judging",
message=f"{agent_name}: {_truncate(msg_text)}",
iteration=iteration,
)
|