File size: 9,437 Bytes
055a3a7
 
 
 
3aa91e9
 
 
 
 
 
2f0030b
3aa91e9
 
 
 
 
 
b50fffd
 
 
 
 
 
 
3aa91e9
 
 
 
 
20c7bad
3aa91e9
 
 
 
 
 
 
 
20c7bad
3aa91e9
 
055a3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa91e9
 
 
20c7bad
3aa91e9
2f0030b
 
 
 
055a3a7
 
 
3aa91e9
 
055a3a7
20c7bad
3aa91e9
 
 
 
055a3a7
3aa91e9
 
 
 
 
 
 
 
 
 
055a3a7
 
3aa91e9
 
 
055a3a7
3aa91e9
 
 
 
 
055a3a7
3aa91e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
055a3a7
3aa91e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
055a3a7
3aa91e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
055a3a7
3aa91e9
 
 
 
 
 
 
 
 
 
 
 
 
3f90da8
3aa91e9
 
 
 
 
 
 
 
 
 
2f0030b
3aa91e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f0030b
3aa91e9
 
 
 
 
 
055a3a7
 
 
 
 
3aa91e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""LlamaIndex RAG service for evidence retrieval and indexing.

Requires optional dependencies: uv sync --extra modal
"""

from typing import Any

import structlog

from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import Evidence

logger = structlog.get_logger()


class LlamaIndexRAGService:
    """RAG service using LlamaIndex with ChromaDB vector store.

    Note:
        This service is currently OpenAI-only. It uses OpenAI embeddings and LLM
        regardless of the global `settings.llm_provider` configuration.
        Requires OPENAI_API_KEY to be set.
    """

    def __init__(
        self,
        collection_name: str = "deepcritical_evidence",
        persist_dir: str | None = None,
        embedding_model: str | None = None,
        similarity_top_k: int = 5,
    ) -> None:
        """
        Initialize LlamaIndex RAG service.

        Args:
            collection_name: Name of the ChromaDB collection
            persist_dir: Directory to persist ChromaDB data
            embedding_model: OpenAI embedding model (defaults to settings.openai_embedding_model)
            similarity_top_k: Number of top results to retrieve
        """
        # Lazy import - only when instantiated
        try:
            import chromadb
            from llama_index.core import Document, Settings, StorageContext, VectorStoreIndex
            from llama_index.core.retrievers import VectorIndexRetriever
            from llama_index.embeddings.openai import OpenAIEmbedding
            from llama_index.llms.openai import OpenAI
            from llama_index.vector_stores.chroma import ChromaVectorStore
        except ImportError as e:
            raise ImportError(
                "LlamaIndex dependencies not installed. Run: uv sync --extra modal"
            ) from e

        # Store references for use in other methods
        self._chromadb = chromadb
        self._Document = Document
        self._Settings = Settings
        self._StorageContext = StorageContext
        self._VectorStoreIndex = VectorStoreIndex
        self._VectorIndexRetriever = VectorIndexRetriever
        self._ChromaVectorStore = ChromaVectorStore

        self.collection_name = collection_name
        self.persist_dir = persist_dir or settings.chroma_db_path
        self.similarity_top_k = similarity_top_k
        self.embedding_model = embedding_model or settings.openai_embedding_model

        # Validate API key before use
        if not settings.openai_api_key:
            raise ConfigurationError("OPENAI_API_KEY required for LlamaIndex RAG service")

        # Configure LlamaIndex settings (use centralized config)
        self._Settings.llm = OpenAI(
            model=settings.openai_model,
            api_key=settings.openai_api_key,
        )
        self._Settings.embed_model = OpenAIEmbedding(
            model=self.embedding_model,
            api_key=settings.openai_api_key,
        )

        # Initialize ChromaDB client
        self.chroma_client = self._chromadb.PersistentClient(path=self.persist_dir)

        # Get or create collection
        try:
            self.collection = self.chroma_client.get_collection(self.collection_name)
            logger.info("loaded_existing_collection", name=self.collection_name)
        except Exception:
            self.collection = self.chroma_client.create_collection(self.collection_name)
            logger.info("created_new_collection", name=self.collection_name)

        # Initialize vector store and index
        self.vector_store = self._ChromaVectorStore(chroma_collection=self.collection)
        self.storage_context = self._StorageContext.from_defaults(vector_store=self.vector_store)

        # Try to load existing index, or create empty one
        try:
            self.index = self._VectorStoreIndex.from_vector_store(
                vector_store=self.vector_store,
                storage_context=self.storage_context,
            )
            logger.info("loaded_existing_index")
        except Exception:
            self.index = self._VectorStoreIndex([], storage_context=self.storage_context)
            logger.info("created_new_index")

    def ingest_evidence(self, evidence_list: list[Evidence]) -> None:
        """
        Ingest evidence into the vector store.

        Args:
            evidence_list: List of Evidence objects to ingest
        """
        if not evidence_list:
            logger.warning("no_evidence_to_ingest")
            return

        # Convert Evidence objects to LlamaIndex Documents
        documents = []
        for evidence in evidence_list:
            metadata = {
                "source": evidence.citation.source,
                "title": evidence.citation.title,
                "url": evidence.citation.url,
                "date": evidence.citation.date,
                "authors": ", ".join(evidence.citation.authors),
            }

            doc = self._Document(
                text=evidence.content,
                metadata=metadata,
                doc_id=evidence.citation.url,  # Use URL as unique ID
            )
            documents.append(doc)

        # Insert documents into index
        try:
            for doc in documents:
                self.index.insert(doc)
            logger.info("ingested_evidence", count=len(documents))
        except Exception as e:
            logger.error("failed_to_ingest_evidence", error=str(e))
            raise

    def ingest_documents(self, documents: list[Any]) -> None:
        """
        Ingest raw LlamaIndex Documents.

        Args:
            documents: List of LlamaIndex Document objects
        """
        if not documents:
            logger.warning("no_documents_to_ingest")
            return

        try:
            for doc in documents:
                self.index.insert(doc)
            logger.info("ingested_documents", count=len(documents))
        except Exception as e:
            logger.error("failed_to_ingest_documents", error=str(e))
            raise

    def retrieve(self, query: str, top_k: int | None = None) -> list[dict[str, Any]]:
        """
        Retrieve relevant documents for a query.

        Args:
            query: Query string
            top_k: Number of results to return (defaults to similarity_top_k)

        Returns:
            List of retrieved documents with metadata and scores
        """
        k = top_k or self.similarity_top_k

        # Create retriever
        retriever = self._VectorIndexRetriever(
            index=self.index,
            similarity_top_k=k,
        )

        try:
            # Retrieve nodes
            nodes = retriever.retrieve(query)

            # Convert to dict format
            results = []
            for node in nodes:
                results.append(
                    {
                        "text": node.node.get_content(),
                        "score": node.score,
                        "metadata": node.node.metadata,
                    }
                )

            logger.info("retrieved_documents", query=query[:50], count=len(results))
            return results

        except Exception as e:
            logger.error("failed_to_retrieve", error=str(e), query=query[:50])
            raise  # Re-raise to allow callers to distinguish errors from empty results

    def query(self, query_str: str, top_k: int | None = None) -> str:
        """
        Query the RAG system and get a synthesized response.

        Args:
            query_str: Query string
            top_k: Number of results to use (defaults to similarity_top_k)

        Returns:
            Synthesized response string
        """
        k = top_k or self.similarity_top_k

        # Create query engine
        query_engine = self.index.as_query_engine(
            similarity_top_k=k,
        )

        try:
            response = query_engine.query(query_str)
            logger.info("generated_response", query=query_str[:50])
            return str(response)

        except Exception as e:
            logger.error("failed_to_query", error=str(e), query=query_str[:50])
            raise  # Re-raise to allow callers to handle errors explicitly

    def clear_collection(self) -> None:
        """Clear all documents from the collection."""
        try:
            self.chroma_client.delete_collection(self.collection_name)
            self.collection = self.chroma_client.create_collection(self.collection_name)
            self.vector_store = self._ChromaVectorStore(chroma_collection=self.collection)
            self.storage_context = self._StorageContext.from_defaults(
                vector_store=self.vector_store
            )
            self.index = self._VectorStoreIndex([], storage_context=self.storage_context)
            logger.info("cleared_collection", name=self.collection_name)
        except Exception as e:
            logger.error("failed_to_clear_collection", error=str(e))
            raise


def get_rag_service(
    collection_name: str = "deepcritical_evidence",
    **kwargs: Any,
) -> LlamaIndexRAGService:
    """
    Get or create a RAG service instance.

    Args:
        collection_name: Name of the ChromaDB collection
        **kwargs: Additional arguments for LlamaIndexRAGService

    Returns:
        Configured LlamaIndexRAGService instance
    """
    return LlamaIndexRAGService(collection_name=collection_name, **kwargs)