Spaces:
Running
Running
File size: 25,328 Bytes
7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff 7c07ade 62d32ab 7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff 62d32ab 77627ff 62d32ab 77627ff 7c07ade 5c8b030 7c07ade 77627ff dde5c6f 7c07ade 77627ff 7c07ade 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 7c07ade 77627ff 7c07ade dde5c6f 7c07ade 5c8b030 1980847 5c8b030 1980847 77627ff 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 7c07ade 77627ff 7c07ade 77627ff 7c07ade 5c8b030 dde5c6f 7c07ade 1980847 77627ff 5c8b030 7c07ade 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff 7c07ade 5c8b030 77627ff 5c8b030 1980847 77627ff 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 7c07ade 77627ff 7c07ade 77627ff dde5c6f 7c07ade 77627ff 7c07ade 62d32ab 7c07ade 77627ff 5c8b030 1980847 77627ff 1980847 77627ff 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 1980847 5c8b030 77627ff 7c07ade 77627ff 7c07ade 77627ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
# Phase 2 Implementation Spec: Search Vertical Slice
**Goal**: Implement the "Eyes and Ears" of the agent — retrieving real biomedical data.
**Philosophy**: "Real data, mocked connections."
**Prerequisite**: Phase 1 complete (all tests passing)
---
## 1. The Slice Definition
This slice covers:
1. **Input**: A string query (e.g., "metformin Alzheimer's disease").
2. **Process**:
- Fetch from PubMed (E-utilities API).
- Fetch from Web (DuckDuckGo).
- Normalize results into `Evidence` models.
3. **Output**: A list of `Evidence` objects.
**Files to Create**:
- `src/utils/models.py` - Pydantic models (Evidence, Citation, SearchResult)
- `src/tools/pubmed.py` - PubMed E-utilities tool
- `src/tools/websearch.py` - DuckDuckGo search tool
- `src/tools/search_handler.py` - Orchestrates multiple tools
- `src/tools/__init__.py` - Exports
---
## 2. PubMed E-utilities API Reference
**Base URL**: `https://eutils.ncbi.nlm.nih.gov/entrez/eutils/`
### Key Endpoints
| Endpoint | Purpose | Example |
|----------|---------|---------|
| `esearch.fcgi` | Search for article IDs | `?db=pubmed&term=metformin+alzheimer&retmax=10` |
| `efetch.fcgi` | Fetch article details | `?db=pubmed&id=12345,67890&rettype=abstract&retmode=xml` |
### Rate Limiting (CRITICAL!)
NCBI **requires** rate limiting:
- **Without API key**: 3 requests/second
- **With API key**: 10 requests/second
Get a free API key: https://www.ncbi.nlm.nih.gov/account/settings/
```python
# Add to .env
NCBI_API_KEY=your-key-here # Optional but recommended
```
### Example Search Flow
```
1. esearch: "metformin alzheimer" → [PMID: 12345, 67890, ...]
2. efetch: PMIDs → Full abstracts/metadata
3. Parse XML → Evidence objects
```
---
## 3. Models (`src/utils/models.py`)
```python
"""Data models for the Search feature."""
from pydantic import BaseModel, Field
from typing import Literal
class Citation(BaseModel):
"""A citation to a source document."""
source: Literal["pubmed", "web"] = Field(description="Where this came from")
title: str = Field(min_length=1, max_length=500)
url: str = Field(description="URL to the source")
date: str = Field(description="Publication date (YYYY-MM-DD or 'Unknown')")
authors: list[str] = Field(default_factory=list)
@property
def formatted(self) -> str:
"""Format as a citation string."""
author_str = ", ".join(self.authors[:3])
if len(self.authors) > 3:
author_str += " et al."
return f"{author_str} ({self.date}). {self.title}. {self.source.upper()}"
class Evidence(BaseModel):
"""A piece of evidence retrieved from search."""
content: str = Field(min_length=1, description="The actual text content")
citation: Citation
relevance: float = Field(default=0.0, ge=0.0, le=1.0, description="Relevance score 0-1")
class Config:
frozen = True # Immutable after creation
class SearchResult(BaseModel):
"""Result of a search operation."""
query: str
evidence: list[Evidence]
sources_searched: list[Literal["pubmed", "web"]]
total_found: int
errors: list[str] = Field(default_factory=list)
```
---
## 4. Tool Protocol (`src/tools/pubmed.py` and `src/tools/websearch.py`)
### The Interface (Protocol) - Add to `src/tools/__init__.py`
```python
"""Search tools package."""
from typing import Protocol, List
# Import implementations
from src.tools.pubmed import PubMedTool
from src.tools.websearch import WebTool
from src.tools.search_handler import SearchHandler
# Re-export
__all__ = ["SearchTool", "PubMedTool", "WebTool", "SearchHandler"]
class SearchTool(Protocol):
"""Protocol defining the interface for all search tools."""
@property
def name(self) -> str:
"""Human-readable name of this tool."""
...
async def search(self, query: str, max_results: int = 10) -> List["Evidence"]:
"""
Execute a search and return evidence.
Args:
query: The search query string
max_results: Maximum number of results to return
Returns:
List of Evidence objects
Raises:
SearchError: If the search fails
RateLimitError: If we hit rate limits
"""
...
```
### PubMed Tool Implementation (`src/tools/pubmed.py`)
```python
"""PubMed search tool using NCBI E-utilities."""
import asyncio
import httpx
import xmltodict
from typing import List
from tenacity import retry, stop_after_attempt, wait_exponential
from src.utils.config import settings
from src.utils.exceptions import SearchError, RateLimitError
from src.utils.models import Evidence, Citation
class PubMedTool:
"""Search tool for PubMed/NCBI."""
BASE_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
RATE_LIMIT_DELAY = 0.34 # ~3 requests/sec without API key
def __init__(self, api_key: str | None = None):
self.api_key = api_key or getattr(settings, "ncbi_api_key", None)
self._last_request_time = 0.0
@property
def name(self) -> str:
return "pubmed"
async def _rate_limit(self) -> None:
"""Enforce NCBI rate limiting."""
now = asyncio.get_event_loop().time()
elapsed = now - self._last_request_time
if elapsed < self.RATE_LIMIT_DELAY:
await asyncio.sleep(self.RATE_LIMIT_DELAY - elapsed)
self._last_request_time = asyncio.get_event_loop().time()
def _build_params(self, **kwargs) -> dict:
"""Build request params with optional API key."""
params = {**kwargs, "retmode": "json"}
if self.api_key:
params["api_key"] = self.api_key
return params
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=1, max=10),
reraise=True,
)
async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
"""
Search PubMed and return evidence.
1. ESearch: Get PMIDs matching query
2. EFetch: Get abstracts for those PMIDs
3. Parse and return Evidence objects
"""
await self._rate_limit()
async with httpx.AsyncClient(timeout=30.0) as client:
# Step 1: Search for PMIDs
search_params = self._build_params(
db="pubmed",
term=query,
retmax=max_results,
sort="relevance",
)
try:
search_resp = await client.get(
f"{self.BASE_URL}/esearch.fcgi",
params=search_params,
)
search_resp.raise_for_status()
except httpx.HTTPStatusError as e:
if e.response.status_code == 429:
raise RateLimitError("PubMed rate limit exceeded")
raise SearchError(f"PubMed search failed: {e}")
search_data = search_resp.json()
pmids = search_data.get("esearchresult", {}).get("idlist", [])
if not pmids:
return []
# Step 2: Fetch abstracts
await self._rate_limit()
fetch_params = self._build_params(
db="pubmed",
id=",".join(pmids),
rettype="abstract",
)
# Use XML for fetch (more reliable parsing)
fetch_params["retmode"] = "xml"
fetch_resp = await client.get(
f"{self.BASE_URL}/efetch.fcgi",
params=fetch_params,
)
fetch_resp.raise_for_status()
# Step 3: Parse XML to Evidence
return self._parse_pubmed_xml(fetch_resp.text)
def _parse_pubmed_xml(self, xml_text: str) -> List[Evidence]:
"""Parse PubMed XML into Evidence objects."""
try:
data = xmltodict.parse(xml_text)
except Exception as e:
raise SearchError(f"Failed to parse PubMed XML: {e}")
articles = data.get("PubmedArticleSet", {}).get("PubmedArticle", [])
# Handle single article (xmltodict returns dict instead of list)
if isinstance(articles, dict):
articles = [articles]
evidence_list = []
for article in articles:
try:
evidence = self._article_to_evidence(article)
if evidence:
evidence_list.append(evidence)
except Exception:
continue # Skip malformed articles
return evidence_list
def _article_to_evidence(self, article: dict) -> Evidence | None:
"""Convert a single PubMed article to Evidence."""
medline = article.get("MedlineCitation", {})
article_data = medline.get("Article", {})
# Extract PMID
pmid = medline.get("PMID", {})
if isinstance(pmid, dict):
pmid = pmid.get("#text", "")
# Extract title
title = article_data.get("ArticleTitle", "")
if isinstance(title, dict):
title = title.get("#text", str(title))
# Extract abstract
abstract_data = article_data.get("Abstract", {}).get("AbstractText", "")
if isinstance(abstract_data, list):
abstract = " ".join(
item.get("#text", str(item)) if isinstance(item, dict) else str(item)
for item in abstract_data
)
elif isinstance(abstract_data, dict):
abstract = abstract_data.get("#text", str(abstract_data))
else:
abstract = str(abstract_data)
if not abstract or not title:
return None
# Extract date
pub_date = article_data.get("Journal", {}).get("JournalIssue", {}).get("PubDate", {})
year = pub_date.get("Year", "Unknown")
month = pub_date.get("Month", "01")
day = pub_date.get("Day", "01")
date_str = f"{year}-{month}-{day}" if year != "Unknown" else "Unknown"
# Extract authors
author_list = article_data.get("AuthorList", {}).get("Author", [])
if isinstance(author_list, dict):
author_list = [author_list]
authors = []
for author in author_list[:5]: # Limit to 5 authors
last = author.get("LastName", "")
first = author.get("ForeName", "")
if last:
authors.append(f"{last} {first}".strip())
return Evidence(
content=abstract[:2000], # Truncate long abstracts
citation=Citation(
source="pubmed",
title=title[:500],
url=f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/",
date=date_str,
authors=authors,
),
)
```
### DuckDuckGo Tool Implementation (`src/tools/websearch.py`)
```python
"""Web search tool using DuckDuckGo."""
from typing import List
from duckduckgo_search import DDGS
from src.utils.exceptions import SearchError
from src.utils.models import Evidence, Citation
class WebTool:
"""Search tool for general web search via DuckDuckGo."""
def __init__(self):
pass
@property
def name(self) -> str:
return "web"
async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
"""
Search DuckDuckGo and return evidence.
Note: duckduckgo-search is synchronous, so we run it in executor.
"""
import asyncio
loop = asyncio.get_event_loop()
try:
results = await loop.run_in_executor(
None,
lambda: self._sync_search(query, max_results),
)
return results
except Exception as e:
raise SearchError(f"Web search failed: {e}")
def _sync_search(self, query: str, max_results: int) -> List[Evidence]:
"""Synchronous search implementation."""
evidence_list = []
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
for result in results:
evidence_list.append(
Evidence(
content=result.get("body", "")[:1000],
citation=Citation(
source="web",
title=result.get("title", "Unknown")[:500],
url=result.get("href", ""),
date="Unknown",
authors=[],
),
)
)
return evidence_list
```
---
## 5. Search Handler (`src/tools/search_handler.py`)
The handler orchestrates multiple tools using the **Scatter-Gather** pattern.
```python
"""Search handler - orchestrates multiple search tools."""
import asyncio
from typing import List, Protocol
import structlog
from src.utils.exceptions import SearchError
from src.utils.models import Evidence, SearchResult
logger = structlog.get_logger()
class SearchTool(Protocol):
"""Protocol defining the interface for all search tools."""
@property
def name(self) -> str:
...
async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
...
def flatten(nested: List[List[Evidence]]) -> List[Evidence]:
"""Flatten a list of lists into a single list."""
return [item for sublist in nested for item in sublist]
class SearchHandler:
"""Orchestrates parallel searches across multiple tools."""
def __init__(self, tools: List[SearchTool], timeout: float = 30.0):
"""
Initialize the search handler.
Args:
tools: List of search tools to use
timeout: Timeout for each search in seconds
"""
self.tools = tools
self.timeout = timeout
async def execute(self, query: str, max_results_per_tool: int = 10) -> SearchResult:
"""
Execute search across all tools in parallel.
Args:
query: The search query
max_results_per_tool: Max results from each tool
Returns:
SearchResult containing all evidence and metadata
"""
logger.info("Starting search", query=query, tools=[t.name for t in self.tools])
# Create tasks for parallel execution
tasks = [
self._search_with_timeout(tool, query, max_results_per_tool)
for tool in self.tools
]
# Gather results (don't fail if one tool fails)
results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results
all_evidence: List[Evidence] = []
sources_searched: List[str] = []
errors: List[str] = []
for tool, result in zip(self.tools, results):
if isinstance(result, Exception):
errors.append(f"{tool.name}: {str(result)}")
logger.warning("Search tool failed", tool=tool.name, error=str(result))
else:
all_evidence.extend(result)
sources_searched.append(tool.name)
logger.info("Search tool succeeded", tool=tool.name, count=len(result))
return SearchResult(
query=query,
evidence=all_evidence,
sources_searched=sources_searched,
total_found=len(all_evidence),
errors=errors,
)
async def _search_with_timeout(
self,
tool: SearchTool,
query: str,
max_results: int,
) -> List[Evidence]:
"""Execute a single tool search with timeout."""
try:
return await asyncio.wait_for(
tool.search(query, max_results),
timeout=self.timeout,
)
except asyncio.TimeoutError:
raise SearchError(f"{tool.name} search timed out after {self.timeout}s")
```
---
## 6. TDD Workflow
### Test File: `tests/unit/tools/test_pubmed.py`
```python
"""Unit tests for PubMed tool."""
import pytest
from unittest.mock import AsyncMock, MagicMock
# Sample PubMed XML response for mocking
SAMPLE_PUBMED_XML = """<?xml version="1.0" ?>
<PubmedArticleSet>
<PubmedArticle>
<MedlineCitation>
<PMID>12345678</PMID>
<Article>
<ArticleTitle>Metformin in Alzheimer's Disease: A Systematic Review</ArticleTitle>
<Abstract>
<AbstractText>Metformin shows neuroprotective properties...</AbstractText>
</Abstract>
<AuthorList>
<Author>
<LastName>Smith</LastName>
<ForeName>John</ForeName>
</Author>
</AuthorList>
<Journal>
<JournalIssue>
<PubDate>
<Year>2024</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
</Journal>
</Article>
</MedlineCitation>
</PubmedArticle>
</PubmedArticleSet>
"""
class TestPubMedTool:
"""Tests for PubMedTool."""
@pytest.mark.asyncio
async def test_search_returns_evidence(self, mocker):
"""PubMedTool should return Evidence objects from search."""
from src.tools.pubmed import PubMedTool
# Mock the HTTP responses
mock_search_response = MagicMock()
mock_search_response.json.return_value = {
"esearchresult": {"idlist": ["12345678"]}
}
mock_search_response.raise_for_status = MagicMock()
mock_fetch_response = MagicMock()
mock_fetch_response.text = SAMPLE_PUBMED_XML
mock_fetch_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.get = AsyncMock(side_effect=[mock_search_response, mock_fetch_response])
mock_client.__aenter__ = AsyncMock(return_value=mock_client)
mock_client.__aexit__ = AsyncMock(return_value=None)
mocker.patch("httpx.AsyncClient", return_value=mock_client)
# Act
tool = PubMedTool()
results = await tool.search("metformin alzheimer")
# Assert
assert len(results) == 1
assert results[0].citation.source == "pubmed"
assert "Metformin" in results[0].citation.title
assert "12345678" in results[0].citation.url
@pytest.mark.asyncio
async def test_search_empty_results(self, mocker):
"""PubMedTool should return empty list when no results."""
from src.tools.pubmed import PubMedTool
mock_response = MagicMock()
mock_response.json.return_value = {"esearchresult": {"idlist": []}}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.get = AsyncMock(return_value=mock_response)
mock_client.__aenter__ = AsyncMock(return_value=mock_client)
mock_client.__aexit__ = AsyncMock(return_value=None)
mocker.patch("httpx.AsyncClient", return_value=mock_client)
tool = PubMedTool()
results = await tool.search("xyznonexistentquery123")
assert results == []
def test_parse_pubmed_xml(self):
"""PubMedTool should correctly parse XML."""
from src.tools.pubmed import PubMedTool
tool = PubMedTool()
results = tool._parse_pubmed_xml(SAMPLE_PUBMED_XML)
assert len(results) == 1
assert results[0].citation.source == "pubmed"
assert "Smith John" in results[0].citation.authors
```
### Test File: `tests/unit/tools/test_websearch.py`
```python
"""Unit tests for WebTool."""
import pytest
from unittest.mock import MagicMock
class TestWebTool:
"""Tests for WebTool."""
@pytest.mark.asyncio
async def test_search_returns_evidence(self, mocker):
"""WebTool should return Evidence objects from search."""
from src.tools.websearch import WebTool
mock_results = [
{
"title": "Drug Repurposing Article",
"href": "https://example.com/article",
"body": "Some content about drug repurposing...",
}
]
mock_ddgs = MagicMock()
mock_ddgs.__enter__ = MagicMock(return_value=mock_ddgs)
mock_ddgs.__exit__ = MagicMock(return_value=None)
mock_ddgs.text = MagicMock(return_value=mock_results)
mocker.patch("src.tools.websearch.DDGS", return_value=mock_ddgs)
tool = WebTool()
results = await tool.search("drug repurposing")
assert len(results) == 1
assert results[0].citation.source == "web"
assert "Drug Repurposing" in results[0].citation.title
```
### Test File: `tests/unit/tools/test_search_handler.py`
```python
"""Unit tests for SearchHandler."""
import pytest
from unittest.mock import AsyncMock
from src.utils.models import Evidence, Citation
from src.utils.exceptions import SearchError
class TestSearchHandler:
"""Tests for SearchHandler."""
@pytest.mark.asyncio
async def test_execute_aggregates_results(self):
"""SearchHandler should aggregate results from all tools."""
from src.tools.search_handler import SearchHandler
# Create mock tools
mock_tool_1 = AsyncMock()
mock_tool_1.name = "mock1"
mock_tool_1.search = AsyncMock(return_value=[
Evidence(
content="Result 1",
citation=Citation(source="pubmed", title="T1", url="u1", date="2024"),
)
])
mock_tool_2 = AsyncMock()
mock_tool_2.name = "mock2"
mock_tool_2.search = AsyncMock(return_value=[
Evidence(
content="Result 2",
citation=Citation(source="web", title="T2", url="u2", date="2024"),
)
])
handler = SearchHandler(tools=[mock_tool_1, mock_tool_2])
result = await handler.execute("test query")
assert result.total_found == 2
assert "mock1" in result.sources_searched
assert "mock2" in result.sources_searched
assert len(result.errors) == 0
@pytest.mark.asyncio
async def test_execute_handles_tool_failure(self):
"""SearchHandler should continue if one tool fails."""
from src.tools.search_handler import SearchHandler
mock_tool_ok = AsyncMock()
mock_tool_ok.name = "ok_tool"
mock_tool_ok.search = AsyncMock(return_value=[
Evidence(
content="Good result",
citation=Citation(source="pubmed", title="T", url="u", date="2024"),
)
])
mock_tool_fail = AsyncMock()
mock_tool_fail.name = "fail_tool"
mock_tool_fail.search = AsyncMock(side_effect=SearchError("API down"))
handler = SearchHandler(tools=[mock_tool_ok, mock_tool_fail])
result = await handler.execute("test")
assert result.total_found == 1
assert "ok_tool" in result.sources_searched
assert len(result.errors) == 1
assert "fail_tool" in result.errors[0]
```
---
## 7. Integration Test (Optional, Real API)
```python
# tests/integration/test_pubmed_live.py
"""Integration tests that hit real APIs (run manually)."""
import pytest
@pytest.mark.integration
@pytest.mark.slow
@pytest.mark.asyncio
async def test_pubmed_live_search():
"""Test real PubMed search (requires network)."""
from src.tools.pubmed import PubMedTool
tool = PubMedTool()
results = await tool.search("metformin diabetes", max_results=3)
assert len(results) > 0
assert results[0].citation.source == "pubmed"
assert "pubmed.ncbi.nlm.nih.gov" in results[0].citation.url
# Run with: uv run pytest tests/integration -m integration
```
---
## 8. Implementation Checklist
- [ ] Create `src/utils/models.py` with all Pydantic models (Evidence, Citation, SearchResult)
- [ ] Create `src/tools/__init__.py` with SearchTool Protocol and exports
- [ ] Implement `src/tools/pubmed.py` with PubMedTool class
- [ ] Implement `src/tools/websearch.py` with WebTool class
- [ ] Create `src/tools/search_handler.py` with SearchHandler class
- [ ] Write tests in `tests/unit/tools/test_pubmed.py`
- [ ] Write tests in `tests/unit/tools/test_websearch.py`
- [ ] Write tests in `tests/unit/tools/test_search_handler.py`
- [ ] Run `uv run pytest tests/unit/tools/ -v` — **ALL TESTS MUST PASS**
- [ ] (Optional) Run integration test: `uv run pytest -m integration`
- [ ] Commit: `git commit -m "feat: phase 2 search slice complete"`
---
## 9. Definition of Done
Phase 2 is **COMPLETE** when:
1. All unit tests pass: `uv run pytest tests/unit/tools/ -v`
2. `SearchHandler` can execute with both tools
3. Graceful degradation: if PubMed fails, WebTool results still return
4. Rate limiting is enforced (verify no 429 errors)
5. Can run this in Python REPL:
```python
import asyncio
from src.tools.pubmed import PubMedTool
from src.tools.websearch import WebTool
from src.tools.search_handler import SearchHandler
async def test():
handler = SearchHandler([PubMedTool(), WebTool()])
result = await handler.execute("metformin alzheimer")
print(f"Found {result.total_found} results")
for e in result.evidence[:3]:
print(f"- {e.citation.title}")
asyncio.run(test())
```
**Proceed to Phase 3 ONLY after all checkboxes are complete.**
|