File size: 25,328 Bytes
7c07ade
 
 
 
77627ff
7c07ade
 
 
 
 
 
 
 
 
 
 
 
 
77627ff
 
 
 
 
 
7c07ade
 
 
77627ff
7c07ade
77627ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07ade
 
77627ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77627ff
 
 
7c07ade
 
62d32ab
7c07ade
77627ff
 
 
 
 
 
 
 
7c07ade
 
 
 
 
 
 
 
 
 
77627ff
 
 
7c07ade
77627ff
 
 
62d32ab
77627ff
 
62d32ab
77627ff
 
 
 
 
 
 
 
7c07ade
 
 
 
 
 
5c8b030
 
7c07ade
77627ff
dde5c6f
 
7c07ade
 
 
 
 
 
 
 
 
77627ff
7c07ade
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8b030
 
 
1980847
 
5c8b030
1980847
 
 
5c8b030
 
1980847
5c8b030
1980847
5c8b030
1980847
5c8b030
 
 
 
1980847
 
 
5c8b030
 
 
 
 
 
 
1980847
5c8b030
 
 
 
 
 
 
 
 
 
1980847
5c8b030
 
1980847
5c8b030
 
1980847
5c8b030
 
 
 
 
 
1980847
5c8b030
 
1980847
5c8b030
 
 
 
 
1980847
5c8b030
 
1980847
5c8b030
 
1980847
5c8b030
 
 
1980847
5c8b030
1980847
5c8b030
 
 
1980847
5c8b030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980847
5c8b030
 
1980847
5c8b030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07ade
 
77627ff
7c07ade
 
 
 
 
 
dde5c6f
 
7c07ade
 
 
 
 
 
 
 
 
 
 
 
 
5c8b030
 
1980847
5c8b030
1980847
77627ff
 
5c8b030
1980847
 
 
5c8b030
1980847
5c8b030
 
 
1980847
5c8b030
 
 
1980847
5c8b030
 
1980847
5c8b030
 
 
 
1980847
 
5c8b030
 
1980847
 
 
5c8b030
 
1980847
5c8b030
7c07ade
 
77627ff
 
 
 
 
7c07ade
 
 
 
77627ff
7c07ade
 
5c8b030
dde5c6f
7c07ade
 
 
1980847
77627ff
 
 
 
 
 
 
 
 
 
 
5c8b030
 
 
 
 
7c07ade
 
1980847
5c8b030
 
 
1980847
 
5c8b030
 
1980847
5c8b030
 
1980847
 
5c8b030
 
1980847
 
5c8b030
 
1980847
 
5c8b030
1980847
5c8b030
1980847
5c8b030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980847
 
 
5c8b030
 
 
1980847
 
5c8b030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07ade
 
 
 
77627ff
7c07ade
77627ff
7c07ade
 
77627ff
7c07ade
5c8b030
 
77627ff
5c8b030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980847
77627ff
1980847
 
 
 
 
5c8b030
1980847
 
5c8b030
 
 
 
 
 
1980847
5c8b030
 
 
1980847
5c8b030
 
 
 
1980847
5c8b030
 
 
 
 
 
 
1980847
 
5c8b030
1980847
 
 
5c8b030
 
1980847
 
5c8b030
 
 
1980847
5c8b030
 
 
 
1980847
5c8b030
1980847
 
5c8b030
1980847
5c8b030
7c07ade
77627ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07ade
 
 
 
 
77627ff
dde5c6f
7c07ade
77627ff
 
 
 
 
 
 
 
7c07ade
 
 
 
 
62d32ab
7c07ade
 
77627ff
 
5c8b030
1980847
77627ff
 
 
 
 
 
 
 
 
 
 
 
 
1980847
 
 
 
 
77627ff
5c8b030
1980847
 
 
5c8b030
 
 
1980847
5c8b030
 
1980847
 
 
5c8b030
 
 
1980847
5c8b030
 
1980847
 
 
5c8b030
1980847
 
 
5c8b030
 
 
77627ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07ade
 
 
 
77627ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07ade
77627ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
# Phase 2 Implementation Spec: Search Vertical Slice

**Goal**: Implement the "Eyes and Ears" of the agent — retrieving real biomedical data.
**Philosophy**: "Real data, mocked connections."
**Prerequisite**: Phase 1 complete (all tests passing)

---

## 1. The Slice Definition

This slice covers:
1. **Input**: A string query (e.g., "metformin Alzheimer's disease").
2. **Process**:
   - Fetch from PubMed (E-utilities API).
   - Fetch from Web (DuckDuckGo).
   - Normalize results into `Evidence` models.
3. **Output**: A list of `Evidence` objects.

**Files to Create**:
- `src/utils/models.py` - Pydantic models (Evidence, Citation, SearchResult)
- `src/tools/pubmed.py` - PubMed E-utilities tool
- `src/tools/websearch.py` - DuckDuckGo search tool
- `src/tools/search_handler.py` - Orchestrates multiple tools
- `src/tools/__init__.py` - Exports

---

## 2. PubMed E-utilities API Reference

**Base URL**: `https://eutils.ncbi.nlm.nih.gov/entrez/eutils/`

### Key Endpoints

| Endpoint | Purpose | Example |
|----------|---------|---------|
| `esearch.fcgi` | Search for article IDs | `?db=pubmed&term=metformin+alzheimer&retmax=10` |
| `efetch.fcgi` | Fetch article details | `?db=pubmed&id=12345,67890&rettype=abstract&retmode=xml` |

### Rate Limiting (CRITICAL!)

NCBI **requires** rate limiting:
- **Without API key**: 3 requests/second
- **With API key**: 10 requests/second

Get a free API key: https://www.ncbi.nlm.nih.gov/account/settings/

```python
# Add to .env
NCBI_API_KEY=your-key-here  # Optional but recommended
```

### Example Search Flow

```
1. esearch: "metformin alzheimer" → [PMID: 12345, 67890, ...]
2. efetch: PMIDs → Full abstracts/metadata
3. Parse XML → Evidence objects
```

---

## 3. Models (`src/utils/models.py`)

```python
"""Data models for the Search feature."""
from pydantic import BaseModel, Field
from typing import Literal


class Citation(BaseModel):
    """A citation to a source document."""

    source: Literal["pubmed", "web"] = Field(description="Where this came from")
    title: str = Field(min_length=1, max_length=500)
    url: str = Field(description="URL to the source")
    date: str = Field(description="Publication date (YYYY-MM-DD or 'Unknown')")
    authors: list[str] = Field(default_factory=list)

    @property
    def formatted(self) -> str:
        """Format as a citation string."""
        author_str = ", ".join(self.authors[:3])
        if len(self.authors) > 3:
            author_str += " et al."
        return f"{author_str} ({self.date}). {self.title}. {self.source.upper()}"


class Evidence(BaseModel):
    """A piece of evidence retrieved from search."""

    content: str = Field(min_length=1, description="The actual text content")
    citation: Citation
    relevance: float = Field(default=0.0, ge=0.0, le=1.0, description="Relevance score 0-1")

    class Config:
        frozen = True  # Immutable after creation


class SearchResult(BaseModel):
    """Result of a search operation."""

    query: str
    evidence: list[Evidence]
    sources_searched: list[Literal["pubmed", "web"]]
    total_found: int
    errors: list[str] = Field(default_factory=list)
```

---

## 4. Tool Protocol (`src/tools/pubmed.py` and `src/tools/websearch.py`)

### The Interface (Protocol) - Add to `src/tools/__init__.py`

```python
"""Search tools package."""
from typing import Protocol, List

# Import implementations
from src.tools.pubmed import PubMedTool
from src.tools.websearch import WebTool
from src.tools.search_handler import SearchHandler

# Re-export
__all__ = ["SearchTool", "PubMedTool", "WebTool", "SearchHandler"]


class SearchTool(Protocol):
    """Protocol defining the interface for all search tools."""

    @property
    def name(self) -> str:
        """Human-readable name of this tool."""
        ...

    async def search(self, query: str, max_results: int = 10) -> List["Evidence"]:
        """
        Execute a search and return evidence.

        Args:
            query: The search query string
            max_results: Maximum number of results to return

        Returns:
            List of Evidence objects

        Raises:
            SearchError: If the search fails
            RateLimitError: If we hit rate limits
        """
        ...
```

### PubMed Tool Implementation (`src/tools/pubmed.py`)

```python
"""PubMed search tool using NCBI E-utilities."""
import asyncio
import httpx
import xmltodict
from typing import List
from tenacity import retry, stop_after_attempt, wait_exponential

from src.utils.config import settings
from src.utils.exceptions import SearchError, RateLimitError
from src.utils.models import Evidence, Citation


class PubMedTool:
    """Search tool for PubMed/NCBI."""

    BASE_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
    RATE_LIMIT_DELAY = 0.34  # ~3 requests/sec without API key

    def __init__(self, api_key: str | None = None):
        self.api_key = api_key or getattr(settings, "ncbi_api_key", None)
        self._last_request_time = 0.0

    @property
    def name(self) -> str:
        return "pubmed"

    async def _rate_limit(self) -> None:
        """Enforce NCBI rate limiting."""
        now = asyncio.get_event_loop().time()
        elapsed = now - self._last_request_time
        if elapsed < self.RATE_LIMIT_DELAY:
            await asyncio.sleep(self.RATE_LIMIT_DELAY - elapsed)
        self._last_request_time = asyncio.get_event_loop().time()

    def _build_params(self, **kwargs) -> dict:
        """Build request params with optional API key."""
        params = {**kwargs, "retmode": "json"}
        if self.api_key:
            params["api_key"] = self.api_key
        return params

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=1, max=10),
        reraise=True,
    )
    async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
        """
        Search PubMed and return evidence.

        1. ESearch: Get PMIDs matching query
        2. EFetch: Get abstracts for those PMIDs
        3. Parse and return Evidence objects
        """
        await self._rate_limit()

        async with httpx.AsyncClient(timeout=30.0) as client:
            # Step 1: Search for PMIDs
            search_params = self._build_params(
                db="pubmed",
                term=query,
                retmax=max_results,
                sort="relevance",
            )

            try:
                search_resp = await client.get(
                    f"{self.BASE_URL}/esearch.fcgi",
                    params=search_params,
                )
                search_resp.raise_for_status()
            except httpx.HTTPStatusError as e:
                if e.response.status_code == 429:
                    raise RateLimitError("PubMed rate limit exceeded")
                raise SearchError(f"PubMed search failed: {e}")

            search_data = search_resp.json()
            pmids = search_data.get("esearchresult", {}).get("idlist", [])

            if not pmids:
                return []

            # Step 2: Fetch abstracts
            await self._rate_limit()
            fetch_params = self._build_params(
                db="pubmed",
                id=",".join(pmids),
                rettype="abstract",
            )
            # Use XML for fetch (more reliable parsing)
            fetch_params["retmode"] = "xml"

            fetch_resp = await client.get(
                f"{self.BASE_URL}/efetch.fcgi",
                params=fetch_params,
            )
            fetch_resp.raise_for_status()

            # Step 3: Parse XML to Evidence
            return self._parse_pubmed_xml(fetch_resp.text)

    def _parse_pubmed_xml(self, xml_text: str) -> List[Evidence]:
        """Parse PubMed XML into Evidence objects."""
        try:
            data = xmltodict.parse(xml_text)
        except Exception as e:
            raise SearchError(f"Failed to parse PubMed XML: {e}")

        articles = data.get("PubmedArticleSet", {}).get("PubmedArticle", [])

        # Handle single article (xmltodict returns dict instead of list)
        if isinstance(articles, dict):
            articles = [articles]

        evidence_list = []
        for article in articles:
            try:
                evidence = self._article_to_evidence(article)
                if evidence:
                    evidence_list.append(evidence)
            except Exception:
                continue  # Skip malformed articles

        return evidence_list

    def _article_to_evidence(self, article: dict) -> Evidence | None:
        """Convert a single PubMed article to Evidence."""
        medline = article.get("MedlineCitation", {})
        article_data = medline.get("Article", {})

        # Extract PMID
        pmid = medline.get("PMID", {})
        if isinstance(pmid, dict):
            pmid = pmid.get("#text", "")

        # Extract title
        title = article_data.get("ArticleTitle", "")
        if isinstance(title, dict):
            title = title.get("#text", str(title))

        # Extract abstract
        abstract_data = article_data.get("Abstract", {}).get("AbstractText", "")
        if isinstance(abstract_data, list):
            abstract = " ".join(
                item.get("#text", str(item)) if isinstance(item, dict) else str(item)
                for item in abstract_data
            )
        elif isinstance(abstract_data, dict):
            abstract = abstract_data.get("#text", str(abstract_data))
        else:
            abstract = str(abstract_data)

        if not abstract or not title:
            return None

        # Extract date
        pub_date = article_data.get("Journal", {}).get("JournalIssue", {}).get("PubDate", {})
        year = pub_date.get("Year", "Unknown")
        month = pub_date.get("Month", "01")
        day = pub_date.get("Day", "01")
        date_str = f"{year}-{month}-{day}" if year != "Unknown" else "Unknown"

        # Extract authors
        author_list = article_data.get("AuthorList", {}).get("Author", [])
        if isinstance(author_list, dict):
            author_list = [author_list]
        authors = []
        for author in author_list[:5]:  # Limit to 5 authors
            last = author.get("LastName", "")
            first = author.get("ForeName", "")
            if last:
                authors.append(f"{last} {first}".strip())

        return Evidence(
            content=abstract[:2000],  # Truncate long abstracts
            citation=Citation(
                source="pubmed",
                title=title[:500],
                url=f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/",
                date=date_str,
                authors=authors,
            ),
        )
```

### DuckDuckGo Tool Implementation (`src/tools/websearch.py`)

```python
"""Web search tool using DuckDuckGo."""
from typing import List
from duckduckgo_search import DDGS

from src.utils.exceptions import SearchError
from src.utils.models import Evidence, Citation


class WebTool:
    """Search tool for general web search via DuckDuckGo."""

    def __init__(self):
        pass

    @property
    def name(self) -> str:
        return "web"

    async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
        """
        Search DuckDuckGo and return evidence.

        Note: duckduckgo-search is synchronous, so we run it in executor.
        """
        import asyncio

        loop = asyncio.get_event_loop()
        try:
            results = await loop.run_in_executor(
                None,
                lambda: self._sync_search(query, max_results),
            )
            return results
        except Exception as e:
            raise SearchError(f"Web search failed: {e}")

    def _sync_search(self, query: str, max_results: int) -> List[Evidence]:
        """Synchronous search implementation."""
        evidence_list = []

        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results))

        for result in results:
            evidence_list.append(
                Evidence(
                    content=result.get("body", "")[:1000],
                    citation=Citation(
                        source="web",
                        title=result.get("title", "Unknown")[:500],
                        url=result.get("href", ""),
                        date="Unknown",
                        authors=[],
                    ),
                )
            )

        return evidence_list
```

---

## 5. Search Handler (`src/tools/search_handler.py`)

The handler orchestrates multiple tools using the **Scatter-Gather** pattern.

```python
"""Search handler - orchestrates multiple search tools."""
import asyncio
from typing import List, Protocol
import structlog

from src.utils.exceptions import SearchError
from src.utils.models import Evidence, SearchResult

logger = structlog.get_logger()


class SearchTool(Protocol):
    """Protocol defining the interface for all search tools."""

    @property
    def name(self) -> str:
        ...

    async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
        ...


def flatten(nested: List[List[Evidence]]) -> List[Evidence]:
    """Flatten a list of lists into a single list."""
    return [item for sublist in nested for item in sublist]


class SearchHandler:
    """Orchestrates parallel searches across multiple tools."""

    def __init__(self, tools: List[SearchTool], timeout: float = 30.0):
        """
        Initialize the search handler.

        Args:
            tools: List of search tools to use
            timeout: Timeout for each search in seconds
        """
        self.tools = tools
        self.timeout = timeout

    async def execute(self, query: str, max_results_per_tool: int = 10) -> SearchResult:
        """
        Execute search across all tools in parallel.

        Args:
            query: The search query
            max_results_per_tool: Max results from each tool

        Returns:
            SearchResult containing all evidence and metadata
        """
        logger.info("Starting search", query=query, tools=[t.name for t in self.tools])

        # Create tasks for parallel execution
        tasks = [
            self._search_with_timeout(tool, query, max_results_per_tool)
            for tool in self.tools
        ]

        # Gather results (don't fail if one tool fails)
        results = await asyncio.gather(*tasks, return_exceptions=True)

        # Process results
        all_evidence: List[Evidence] = []
        sources_searched: List[str] = []
        errors: List[str] = []

        for tool, result in zip(self.tools, results):
            if isinstance(result, Exception):
                errors.append(f"{tool.name}: {str(result)}")
                logger.warning("Search tool failed", tool=tool.name, error=str(result))
            else:
                all_evidence.extend(result)
                sources_searched.append(tool.name)
                logger.info("Search tool succeeded", tool=tool.name, count=len(result))

        return SearchResult(
            query=query,
            evidence=all_evidence,
            sources_searched=sources_searched,
            total_found=len(all_evidence),
            errors=errors,
        )

    async def _search_with_timeout(
        self,
        tool: SearchTool,
        query: str,
        max_results: int,
    ) -> List[Evidence]:
        """Execute a single tool search with timeout."""
        try:
            return await asyncio.wait_for(
                tool.search(query, max_results),
                timeout=self.timeout,
            )
        except asyncio.TimeoutError:
            raise SearchError(f"{tool.name} search timed out after {self.timeout}s")
```

---

## 6. TDD Workflow

### Test File: `tests/unit/tools/test_pubmed.py`

```python
"""Unit tests for PubMed tool."""
import pytest
from unittest.mock import AsyncMock, MagicMock


# Sample PubMed XML response for mocking
SAMPLE_PUBMED_XML = """<?xml version="1.0" ?>
<PubmedArticleSet>
    <PubmedArticle>
        <MedlineCitation>
            <PMID>12345678</PMID>
            <Article>
                <ArticleTitle>Metformin in Alzheimer's Disease: A Systematic Review</ArticleTitle>
                <Abstract>
                    <AbstractText>Metformin shows neuroprotective properties...</AbstractText>
                </Abstract>
                <AuthorList>
                    <Author>
                        <LastName>Smith</LastName>
                        <ForeName>John</ForeName>
                    </Author>
                </AuthorList>
                <Journal>
                    <JournalIssue>
                        <PubDate>
                            <Year>2024</Year>
                            <Month>01</Month>
                        </PubDate>
                    </JournalIssue>
                </Journal>
            </Article>
        </MedlineCitation>
    </PubmedArticle>
</PubmedArticleSet>
"""


class TestPubMedTool:
    """Tests for PubMedTool."""

    @pytest.mark.asyncio
    async def test_search_returns_evidence(self, mocker):
        """PubMedTool should return Evidence objects from search."""
        from src.tools.pubmed import PubMedTool

        # Mock the HTTP responses
        mock_search_response = MagicMock()
        mock_search_response.json.return_value = {
            "esearchresult": {"idlist": ["12345678"]}
        }
        mock_search_response.raise_for_status = MagicMock()

        mock_fetch_response = MagicMock()
        mock_fetch_response.text = SAMPLE_PUBMED_XML
        mock_fetch_response.raise_for_status = MagicMock()

        mock_client = AsyncMock()
        mock_client.get = AsyncMock(side_effect=[mock_search_response, mock_fetch_response])
        mock_client.__aenter__ = AsyncMock(return_value=mock_client)
        mock_client.__aexit__ = AsyncMock(return_value=None)

        mocker.patch("httpx.AsyncClient", return_value=mock_client)

        # Act
        tool = PubMedTool()
        results = await tool.search("metformin alzheimer")

        # Assert
        assert len(results) == 1
        assert results[0].citation.source == "pubmed"
        assert "Metformin" in results[0].citation.title
        assert "12345678" in results[0].citation.url

    @pytest.mark.asyncio
    async def test_search_empty_results(self, mocker):
        """PubMedTool should return empty list when no results."""
        from src.tools.pubmed import PubMedTool

        mock_response = MagicMock()
        mock_response.json.return_value = {"esearchresult": {"idlist": []}}
        mock_response.raise_for_status = MagicMock()

        mock_client = AsyncMock()
        mock_client.get = AsyncMock(return_value=mock_response)
        mock_client.__aenter__ = AsyncMock(return_value=mock_client)
        mock_client.__aexit__ = AsyncMock(return_value=None)

        mocker.patch("httpx.AsyncClient", return_value=mock_client)

        tool = PubMedTool()
        results = await tool.search("xyznonexistentquery123")

        assert results == []

    def test_parse_pubmed_xml(self):
        """PubMedTool should correctly parse XML."""
        from src.tools.pubmed import PubMedTool

        tool = PubMedTool()
        results = tool._parse_pubmed_xml(SAMPLE_PUBMED_XML)

        assert len(results) == 1
        assert results[0].citation.source == "pubmed"
        assert "Smith John" in results[0].citation.authors
```

### Test File: `tests/unit/tools/test_websearch.py`

```python
"""Unit tests for WebTool."""
import pytest
from unittest.mock import MagicMock


class TestWebTool:
    """Tests for WebTool."""

    @pytest.mark.asyncio
    async def test_search_returns_evidence(self, mocker):
        """WebTool should return Evidence objects from search."""
        from src.tools.websearch import WebTool

        mock_results = [
            {
                "title": "Drug Repurposing Article",
                "href": "https://example.com/article",
                "body": "Some content about drug repurposing...",
            }
        ]

        mock_ddgs = MagicMock()
        mock_ddgs.__enter__ = MagicMock(return_value=mock_ddgs)
        mock_ddgs.__exit__ = MagicMock(return_value=None)
        mock_ddgs.text = MagicMock(return_value=mock_results)

        mocker.patch("src.tools.websearch.DDGS", return_value=mock_ddgs)

        tool = WebTool()
        results = await tool.search("drug repurposing")

        assert len(results) == 1
        assert results[0].citation.source == "web"
        assert "Drug Repurposing" in results[0].citation.title
```

### Test File: `tests/unit/tools/test_search_handler.py`

```python
"""Unit tests for SearchHandler."""
import pytest
from unittest.mock import AsyncMock

from src.utils.models import Evidence, Citation
from src.utils.exceptions import SearchError


class TestSearchHandler:
    """Tests for SearchHandler."""

    @pytest.mark.asyncio
    async def test_execute_aggregates_results(self):
        """SearchHandler should aggregate results from all tools."""
        from src.tools.search_handler import SearchHandler

        # Create mock tools
        mock_tool_1 = AsyncMock()
        mock_tool_1.name = "mock1"
        mock_tool_1.search = AsyncMock(return_value=[
            Evidence(
                content="Result 1",
                citation=Citation(source="pubmed", title="T1", url="u1", date="2024"),
            )
        ])

        mock_tool_2 = AsyncMock()
        mock_tool_2.name = "mock2"
        mock_tool_2.search = AsyncMock(return_value=[
            Evidence(
                content="Result 2",
                citation=Citation(source="web", title="T2", url="u2", date="2024"),
            )
        ])

        handler = SearchHandler(tools=[mock_tool_1, mock_tool_2])
        result = await handler.execute("test query")

        assert result.total_found == 2
        assert "mock1" in result.sources_searched
        assert "mock2" in result.sources_searched
        assert len(result.errors) == 0

    @pytest.mark.asyncio
    async def test_execute_handles_tool_failure(self):
        """SearchHandler should continue if one tool fails."""
        from src.tools.search_handler import SearchHandler

        mock_tool_ok = AsyncMock()
        mock_tool_ok.name = "ok_tool"
        mock_tool_ok.search = AsyncMock(return_value=[
            Evidence(
                content="Good result",
                citation=Citation(source="pubmed", title="T", url="u", date="2024"),
            )
        ])

        mock_tool_fail = AsyncMock()
        mock_tool_fail.name = "fail_tool"
        mock_tool_fail.search = AsyncMock(side_effect=SearchError("API down"))

        handler = SearchHandler(tools=[mock_tool_ok, mock_tool_fail])
        result = await handler.execute("test")

        assert result.total_found == 1
        assert "ok_tool" in result.sources_searched
        assert len(result.errors) == 1
        assert "fail_tool" in result.errors[0]
```

---

## 7. Integration Test (Optional, Real API)

```python
# tests/integration/test_pubmed_live.py
"""Integration tests that hit real APIs (run manually)."""
import pytest


@pytest.mark.integration
@pytest.mark.slow
@pytest.mark.asyncio
async def test_pubmed_live_search():
    """Test real PubMed search (requires network)."""
    from src.tools.pubmed import PubMedTool

    tool = PubMedTool()
    results = await tool.search("metformin diabetes", max_results=3)

    assert len(results) > 0
    assert results[0].citation.source == "pubmed"
    assert "pubmed.ncbi.nlm.nih.gov" in results[0].citation.url


# Run with: uv run pytest tests/integration -m integration
```

---

## 8. Implementation Checklist

- [ ] Create `src/utils/models.py` with all Pydantic models (Evidence, Citation, SearchResult)
- [ ] Create `src/tools/__init__.py` with SearchTool Protocol and exports
- [ ] Implement `src/tools/pubmed.py` with PubMedTool class
- [ ] Implement `src/tools/websearch.py` with WebTool class
- [ ] Create `src/tools/search_handler.py` with SearchHandler class
- [ ] Write tests in `tests/unit/tools/test_pubmed.py`
- [ ] Write tests in `tests/unit/tools/test_websearch.py`
- [ ] Write tests in `tests/unit/tools/test_search_handler.py`
- [ ] Run `uv run pytest tests/unit/tools/ -v`**ALL TESTS MUST PASS**
- [ ] (Optional) Run integration test: `uv run pytest -m integration`
- [ ] Commit: `git commit -m "feat: phase 2 search slice complete"`

---

## 9. Definition of Done

Phase 2 is **COMPLETE** when:

1. All unit tests pass: `uv run pytest tests/unit/tools/ -v`
2. `SearchHandler` can execute with both tools
3. Graceful degradation: if PubMed fails, WebTool results still return
4. Rate limiting is enforced (verify no 429 errors)
5. Can run this in Python REPL:

```python
import asyncio
from src.tools.pubmed import PubMedTool
from src.tools.websearch import WebTool
from src.tools.search_handler import SearchHandler

async def test():
    handler = SearchHandler([PubMedTool(), WebTool()])
    result = await handler.execute("metformin alzheimer")
    print(f"Found {result.total_found} results")
    for e in result.evidence[:3]:
        print(f"- {e.citation.title}")

asyncio.run(test())
```

**Proceed to Phase 3 ONLY after all checkboxes are complete.**