Spaces:
Running
Running
File size: 23,320 Bytes
7c07ade 62d32ab 7c07ade 77627ff 7c07ade 77627ff e35d6b1 77627ff 7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff 7c07ade 77627ff b1310d3 77627ff 5c8b030 77627ff b1310d3 77627ff 5c8b030 77627ff b1310d3 77627ff 5c8b030 77627ff b1310d3 77627ff 5c8b030 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff 7c07ade 77627ff e35d6b1 62d32ab e35d6b1 5c8b030 77627ff 5c8b030 77627ff b1310d3 77627ff b1310d3 77627ff e35d6b1 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff 7c07ade 77627ff e35d6b1 77627ff b1310d3 77627ff e35d6b1 5c8b030 e35d6b1 77627ff 7ecca95 77627ff e35d6b1 77627ff 5c8b030 77627ff 5c8b030 77627ff b1310d3 e35d6b1 77627ff e35d6b1 77627ff 5c8b030 77627ff b1310d3 77627ff b1310d3 77627ff 5c8b030 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 5c8b030 b1310d3 5c8b030 b1310d3 5c8b030 b1310d3 77627ff b1310d3 e35d6b1 77627ff 5c8b030 b1310d3 5c8b030 77627ff b1310d3 5c8b030 b1310d3 e35d6b1 77627ff 5c8b030 77627ff b1310d3 77627ff b1310d3 77627ff 5c8b030 77627ff e35d6b1 5c8b030 e35d6b1 62d32ab 7c07ade 62d32ab e35d6b1 77627ff e35d6b1 77627ff e35d6b1 77627ff 62d32ab e35d6b1 77627ff e35d6b1 77627ff e35d6b1 77627ff e35d6b1 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff b1310d3 77627ff e35d6b1 7c07ade 77627ff 7c07ade 77627ff 62d32ab 77627ff 7ecca95 77627ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
# Phase 3 Implementation Spec: Judge Vertical Slice
**Goal**: Implement the "Brain" of the agent β evaluating evidence quality.
**Philosophy**: "Structured Output or Bust."
**Prerequisite**: Phase 2 complete (all search tests passing)
---
## 1. The Slice Definition
This slice covers:
1. **Input**: A user question + a list of `Evidence` (from Phase 2).
2. **Process**:
- Construct a prompt with the evidence.
- Call LLM (PydanticAI / OpenAI / Anthropic).
- Force JSON structured output.
3. **Output**: A `JudgeAssessment` object.
**Files to Create**:
- `src/utils/models.py` - Add JudgeAssessment models (extend from Phase 2)
- `src/prompts/judge.py` - Judge prompt templates
- `src/agent_factory/judges.py` - JudgeHandler with PydanticAI
- `tests/unit/agent_factory/test_judges.py` - Unit tests
---
## 2. Models (Add to `src/utils/models.py`)
The output schema must be strict for reliable structured output.
```python
"""Add these models to src/utils/models.py (after Evidence models from Phase 2)."""
from pydantic import BaseModel, Field
from typing import List, Literal
class AssessmentDetails(BaseModel):
"""Detailed assessment of evidence quality."""
mechanism_score: int = Field(
...,
ge=0,
le=10,
description="How well does the evidence explain the mechanism? 0-10"
)
mechanism_reasoning: str = Field(
...,
min_length=10,
description="Explanation of mechanism score"
)
clinical_evidence_score: int = Field(
...,
ge=0,
le=10,
description="Strength of clinical/preclinical evidence. 0-10"
)
clinical_reasoning: str = Field(
...,
min_length=10,
description="Explanation of clinical evidence score"
)
drug_candidates: List[str] = Field(
default_factory=list,
description="List of specific drug candidates mentioned"
)
key_findings: List[str] = Field(
default_factory=list,
description="Key findings from the evidence"
)
class JudgeAssessment(BaseModel):
"""Complete assessment from the Judge."""
details: AssessmentDetails
sufficient: bool = Field(
...,
description="Is evidence sufficient to provide a recommendation?"
)
confidence: float = Field(
...,
ge=0.0,
le=1.0,
description="Confidence in the assessment (0-1)"
)
recommendation: Literal["continue", "synthesize"] = Field(
...,
description="continue = need more evidence, synthesize = ready to answer"
)
next_search_queries: List[str] = Field(
default_factory=list,
description="If continue, what queries to search next"
)
reasoning: str = Field(
...,
min_length=20,
description="Overall reasoning for the recommendation"
)
```
---
## 3. Prompt Engineering (`src/prompts/judge.py`)
We treat prompts as code. They should be versioned and clean.
```python
"""Judge prompts for evidence assessment."""
from typing import List
from src.utils.models import Evidence
SYSTEM_PROMPT = """You are an expert drug repurposing research judge.
Your task is to evaluate evidence from biomedical literature and determine if it's sufficient to recommend drug candidates for a given condition.
## Evaluation Criteria
1. **Mechanism Score (0-10)**: How well does the evidence explain the biological mechanism?
- 0-3: No clear mechanism, speculative
- 4-6: Some mechanistic insight, but gaps exist
- 7-10: Clear, well-supported mechanism of action
2. **Clinical Evidence Score (0-10)**: Strength of clinical/preclinical support?
- 0-3: No clinical data, only theoretical
- 4-6: Preclinical or early clinical data
- 7-10: Strong clinical evidence (trials, meta-analyses)
3. **Sufficiency**: Evidence is sufficient when:
- Combined scores >= 12 AND
- At least one specific drug candidate identified AND
- Clear mechanistic rationale exists
## Output Rules
- Always output valid JSON matching the schema
- Be conservative: only recommend "synthesize" when truly confident
- If continuing, suggest specific, actionable search queries
- Never hallucinate drug names or findings not in the evidence
"""
def format_user_prompt(question: str, evidence: List[Evidence]) -> str:
"""
Format the user prompt with question and evidence.
Args:
question: The user's research question
evidence: List of Evidence objects from search
Returns:
Formatted prompt string
"""
evidence_text = "\n\n".join([
f"### Evidence {i+1}\n"
f"**Source**: {e.citation.source.upper()} - {e.citation.title}\n"
f"**URL**: {e.citation.url}\n"
f"**Date**: {e.citation.date}\n"
f"**Content**:\n{e.content[:1500]}..."
if len(e.content) > 1500 else
f"### Evidence {i+1}\n"
f"**Source**: {e.citation.source.upper()} - {e.citation.title}\n"
f"**URL**: {e.citation.url}\n"
f"**Date**: {e.citation.date}\n"
f"**Content**:\n{e.content}"
for i, e in enumerate(evidence)
])
return f"""## Research Question
{question}
## Available Evidence ({len(evidence)} sources)
{evidence_text}
## Your Task
Evaluate this evidence and determine if it's sufficient to recommend drug repurposing candidates.
Respond with a JSON object matching the JudgeAssessment schema.
"""
def format_empty_evidence_prompt(question: str) -> str:
"""
Format prompt when no evidence was found.
Args:
question: The user's research question
Returns:
Formatted prompt string
"""
return f"""## Research Question
{question}
## Available Evidence
No evidence was found from the search.
## Your Task
Since no evidence was found, recommend search queries that might yield better results.
Set sufficient=False and recommendation="continue".
Suggest 3-5 specific search queries.
"""
```
---
## 4. JudgeHandler Implementation (`src/agent_factory/judges.py`)
Using PydanticAI for structured output with retry logic.
```python
"""Judge handler for evidence assessment using PydanticAI."""
import os
from typing import List
import structlog
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.models.anthropic import AnthropicModel
from src.utils.models import Evidence, JudgeAssessment, AssessmentDetails
from src.utils.config import settings
from src.prompts.judge import SYSTEM_PROMPT, format_user_prompt, format_empty_evidence_prompt
logger = structlog.get_logger()
def get_model():
"""Get the LLM model based on configuration."""
provider = getattr(settings, "llm_provider", "openai")
if provider == "anthropic":
return AnthropicModel(
model_name=getattr(settings, "anthropic_model", "claude-3-5-sonnet-20241022"),
api_key=os.getenv("ANTHROPIC_API_KEY"),
)
else:
return OpenAIModel(
model_name=getattr(settings, "openai_model", "gpt-4o"),
api_key=os.getenv("OPENAI_API_KEY"),
)
class JudgeHandler:
"""
Handles evidence assessment using an LLM with structured output.
Uses PydanticAI to ensure responses match the JudgeAssessment schema.
"""
def __init__(self, model=None):
"""
Initialize the JudgeHandler.
Args:
model: Optional PydanticAI model. If None, uses config default.
"""
self.model = model or get_model()
self.agent = Agent(
model=self.model,
result_type=JudgeAssessment,
system_prompt=SYSTEM_PROMPT,
retries=3,
)
async def assess(
self,
question: str,
evidence: List[Evidence],
) -> JudgeAssessment:
"""
Assess evidence and determine if it's sufficient.
Args:
question: The user's research question
evidence: List of Evidence objects from search
Returns:
JudgeAssessment with evaluation results
Raises:
JudgeError: If assessment fails after retries
"""
logger.info(
"Starting evidence assessment",
question=question[:100],
evidence_count=len(evidence),
)
# Format the prompt based on whether we have evidence
if evidence:
user_prompt = format_user_prompt(question, evidence)
else:
user_prompt = format_empty_evidence_prompt(question)
try:
# Run the agent with structured output
result = await self.agent.run(user_prompt)
assessment = result.data
logger.info(
"Assessment complete",
sufficient=assessment.sufficient,
recommendation=assessment.recommendation,
confidence=assessment.confidence,
)
return assessment
except Exception as e:
logger.error("Assessment failed", error=str(e))
# Return a safe default assessment on failure
return self._create_fallback_assessment(question, str(e))
def _create_fallback_assessment(
self,
question: str,
error: str,
) -> JudgeAssessment:
"""
Create a fallback assessment when LLM fails.
Args:
question: The original question
error: The error message
Returns:
Safe fallback JudgeAssessment
"""
return JudgeAssessment(
details=AssessmentDetails(
mechanism_score=0,
mechanism_reasoning="Assessment failed due to LLM error",
clinical_evidence_score=0,
clinical_reasoning="Assessment failed due to LLM error",
drug_candidates=[],
key_findings=[],
),
sufficient=False,
confidence=0.0,
recommendation="continue",
next_search_queries=[
f"{question} mechanism",
f"{question} clinical trials",
f"{question} drug candidates",
],
reasoning=f"Assessment failed: {error}. Recommend retrying with refined queries.",
)
class MockJudgeHandler:
"""
Mock JudgeHandler for testing without LLM calls.
Use this in unit tests to avoid API calls.
"""
def __init__(self, mock_response: JudgeAssessment | None = None):
"""
Initialize with optional mock response.
Args:
mock_response: The assessment to return. If None, uses default.
"""
self.mock_response = mock_response
self.call_count = 0
self.last_question = None
self.last_evidence = None
async def assess(
self,
question: str,
evidence: List[Evidence],
) -> JudgeAssessment:
"""Return the mock response."""
self.call_count += 1
self.last_question = question
self.last_evidence = evidence
if self.mock_response:
return self.mock_response
# Default mock response
return JudgeAssessment(
details=AssessmentDetails(
mechanism_score=7,
mechanism_reasoning="Mock assessment - good mechanism evidence",
clinical_evidence_score=6,
clinical_reasoning="Mock assessment - moderate clinical evidence",
drug_candidates=["Drug A", "Drug B"],
key_findings=["Finding 1", "Finding 2"],
),
sufficient=len(evidence) >= 3,
confidence=0.75,
recommendation="synthesize" if len(evidence) >= 3 else "continue",
next_search_queries=["query 1", "query 2"] if len(evidence) < 3 else [],
reasoning="Mock assessment for testing purposes",
)
```
---
## 5. TDD Workflow
### Test File: `tests/unit/agent_factory/test_judges.py`
```python
"""Unit tests for JudgeHandler."""
import pytest
from unittest.mock import AsyncMock, MagicMock, patch
from src.utils.models import (
Evidence,
Citation,
JudgeAssessment,
AssessmentDetails,
)
class TestJudgeHandler:
"""Tests for JudgeHandler."""
@pytest.mark.asyncio
async def test_assess_returns_assessment(self):
"""JudgeHandler should return JudgeAssessment from LLM."""
from src.agent_factory.judges import JudgeHandler
# Create mock assessment
mock_assessment = JudgeAssessment(
details=AssessmentDetails(
mechanism_score=8,
mechanism_reasoning="Strong mechanistic evidence",
clinical_evidence_score=7,
clinical_reasoning="Good clinical support",
drug_candidates=["Metformin"],
key_findings=["Neuroprotective effects"],
),
sufficient=True,
confidence=0.85,
recommendation="synthesize",
next_search_queries=[],
reasoning="Evidence is sufficient for synthesis",
)
# Mock the PydanticAI agent
mock_result = MagicMock()
mock_result.data = mock_assessment
with patch("src.agent_factory.judges.Agent") as mock_agent_class:
mock_agent = AsyncMock()
mock_agent.run = AsyncMock(return_value=mock_result)
mock_agent_class.return_value = mock_agent
handler = JudgeHandler()
# Replace the agent with our mock
handler.agent = mock_agent
evidence = [
Evidence(
content="Metformin shows neuroprotective properties...",
citation=Citation(
source="pubmed",
title="Metformin in AD",
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
date="2024-01-01",
),
)
]
result = await handler.assess("metformin alzheimer", evidence)
assert result.sufficient is True
assert result.recommendation == "synthesize"
assert result.confidence == 0.85
assert "Metformin" in result.details.drug_candidates
@pytest.mark.asyncio
async def test_assess_empty_evidence(self):
"""JudgeHandler should handle empty evidence gracefully."""
from src.agent_factory.judges import JudgeHandler
mock_assessment = JudgeAssessment(
details=AssessmentDetails(
mechanism_score=0,
mechanism_reasoning="No evidence to assess",
clinical_evidence_score=0,
clinical_reasoning="No evidence to assess",
drug_candidates=[],
key_findings=[],
),
sufficient=False,
confidence=0.0,
recommendation="continue",
next_search_queries=["metformin alzheimer mechanism"],
reasoning="No evidence found, need to search more",
)
mock_result = MagicMock()
mock_result.data = mock_assessment
with patch("src.agent_factory.judges.Agent") as mock_agent_class:
mock_agent = AsyncMock()
mock_agent.run = AsyncMock(return_value=mock_result)
mock_agent_class.return_value = mock_agent
handler = JudgeHandler()
handler.agent = mock_agent
result = await handler.assess("metformin alzheimer", [])
assert result.sufficient is False
assert result.recommendation == "continue"
assert len(result.next_search_queries) > 0
@pytest.mark.asyncio
async def test_assess_handles_llm_failure(self):
"""JudgeHandler should return fallback on LLM failure."""
from src.agent_factory.judges import JudgeHandler
with patch("src.agent_factory.judges.Agent") as mock_agent_class:
mock_agent = AsyncMock()
mock_agent.run = AsyncMock(side_effect=Exception("API Error"))
mock_agent_class.return_value = mock_agent
handler = JudgeHandler()
handler.agent = mock_agent
evidence = [
Evidence(
content="Some content",
citation=Citation(
source="pubmed",
title="Title",
url="url",
date="2024",
),
)
]
result = await handler.assess("test question", evidence)
# Should return fallback, not raise
assert result.sufficient is False
assert result.recommendation == "continue"
assert "failed" in result.reasoning.lower()
class TestMockJudgeHandler:
"""Tests for MockJudgeHandler."""
@pytest.mark.asyncio
async def test_mock_handler_returns_default(self):
"""MockJudgeHandler should return default assessment."""
from src.agent_factory.judges import MockJudgeHandler
handler = MockJudgeHandler()
evidence = [
Evidence(
content="Content 1",
citation=Citation(source="pubmed", title="T1", url="u1", date="2024"),
),
Evidence(
content="Content 2",
citation=Citation(source="web", title="T2", url="u2", date="2024"),
),
]
result = await handler.assess("test", evidence)
assert handler.call_count == 1
assert handler.last_question == "test"
assert len(handler.last_evidence) == 2
assert result.details.mechanism_score == 7
@pytest.mark.asyncio
async def test_mock_handler_custom_response(self):
"""MockJudgeHandler should return custom response when provided."""
from src.agent_factory.judges import MockJudgeHandler
custom_assessment = JudgeAssessment(
details=AssessmentDetails(
mechanism_score=10,
mechanism_reasoning="Custom reasoning",
clinical_evidence_score=10,
clinical_reasoning="Custom clinical",
drug_candidates=["CustomDrug"],
key_findings=["Custom finding"],
),
sufficient=True,
confidence=1.0,
recommendation="synthesize",
next_search_queries=[],
reasoning="Custom assessment",
)
handler = MockJudgeHandler(mock_response=custom_assessment)
result = await handler.assess("test", [])
assert result.details.mechanism_score == 10
assert result.details.drug_candidates == ["CustomDrug"]
@pytest.mark.asyncio
async def test_mock_handler_insufficient_with_few_evidence(self):
"""MockJudgeHandler should recommend continue with < 3 evidence."""
from src.agent_factory.judges import MockJudgeHandler
handler = MockJudgeHandler()
# Only 2 pieces of evidence
evidence = [
Evidence(
content="Content",
citation=Citation(source="pubmed", title="T", url="u", date="2024"),
),
Evidence(
content="Content 2",
citation=Citation(source="web", title="T2", url="u2", date="2024"),
),
]
result = await handler.assess("test", evidence)
assert result.sufficient is False
assert result.recommendation == "continue"
assert len(result.next_search_queries) > 0
```
---
## 6. Dependencies
Add to `pyproject.toml`:
```toml
[project]
dependencies = [
# ... existing deps ...
"pydantic-ai>=0.0.16",
"openai>=1.0.0",
"anthropic>=0.18.0",
]
```
---
## 7. Configuration (`src/utils/config.py`)
Add LLM configuration:
```python
"""Add to src/utils/config.py."""
from pydantic_settings import BaseSettings
from typing import Literal
class Settings(BaseSettings):
"""Application settings."""
# LLM Configuration
llm_provider: Literal["openai", "anthropic"] = "openai"
openai_model: str = "gpt-4o"
anthropic_model: str = "claude-3-5-sonnet-20241022"
# API Keys (loaded from environment)
openai_api_key: str | None = None
anthropic_api_key: str | None = None
ncbi_api_key: str | None = None
class Config:
env_file = ".env"
env_file_encoding = "utf-8"
settings = Settings()
```
---
## 8. Implementation Checklist
- [ ] Add `AssessmentDetails` and `JudgeAssessment` models to `src/utils/models.py`
- [ ] Create `src/prompts/__init__.py` (empty, for package)
- [ ] Create `src/prompts/judge.py` with prompt templates
- [ ] Create `src/agent_factory/__init__.py` with exports
- [ ] Implement `src/agent_factory/judges.py` with JudgeHandler
- [ ] Update `src/utils/config.py` with LLM settings
- [ ] Create `tests/unit/agent_factory/__init__.py`
- [ ] Write tests in `tests/unit/agent_factory/test_judges.py`
- [ ] Run `uv run pytest tests/unit/agent_factory/ -v` β **ALL TESTS MUST PASS**
- [ ] Commit: `git commit -m "feat: phase 3 judge slice complete"`
---
## 9. Definition of Done
Phase 3 is **COMPLETE** when:
1. All unit tests pass: `uv run pytest tests/unit/agent_factory/ -v`
2. `JudgeHandler` can assess evidence and return structured output
3. Graceful degradation: if LLM fails, returns safe fallback
4. MockJudgeHandler works for testing without API calls
5. Can run this in Python REPL:
```python
import asyncio
import os
from src.utils.models import Evidence, Citation
from src.agent_factory.judges import JudgeHandler, MockJudgeHandler
# Test with mock (no API key needed)
async def test_mock():
handler = MockJudgeHandler()
evidence = [
Evidence(
content="Metformin shows neuroprotective effects in AD models",
citation=Citation(
source="pubmed",
title="Metformin and Alzheimer's",
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
date="2024-01-01",
),
),
]
result = await handler.assess("metformin alzheimer", evidence)
print(f"Sufficient: {result.sufficient}")
print(f"Recommendation: {result.recommendation}")
print(f"Drug candidates: {result.details.drug_candidates}")
asyncio.run(test_mock())
# Test with real LLM (requires API key)
async def test_real():
os.environ["OPENAI_API_KEY"] = "your-key-here" # Or set in .env
handler = JudgeHandler()
evidence = [
Evidence(
content="Metformin shows neuroprotective effects in AD models...",
citation=Citation(
source="pubmed",
title="Metformin and Alzheimer's",
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
date="2024-01-01",
),
),
]
result = await handler.assess("metformin alzheimer", evidence)
print(f"Sufficient: {result.sufficient}")
print(f"Confidence: {result.confidence}")
print(f"Reasoning: {result.reasoning}")
# asyncio.run(test_real()) # Uncomment with valid API key
```
**Proceed to Phase 4 ONLY after all checkboxes are complete.**
|