File size: 8,853 Bytes
e67c99f
 
 
 
2e4a760
e67c99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e4a760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67c99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e4a760
e67c99f
 
2e4a760
 
e67c99f
 
 
 
 
 
 
2e4a760
 
 
e67c99f
 
 
 
 
 
 
 
2e4a760
 
e67c99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""bioRxiv/medRxiv preprint search tool."""

import re
from datetime import datetime, timedelta
from typing import Any, ClassVar

import httpx
from tenacity import retry, stop_after_attempt, wait_exponential

from src.utils.exceptions import SearchError
from src.utils.models import Citation, Evidence


class BioRxivTool:
    """Search tool for bioRxiv and medRxiv preprints."""

    BASE_URL = "https://api.biorxiv.org/details"
    # Use medRxiv for medical/clinical content (more relevant for drug repurposing)
    DEFAULT_SERVER = "medrxiv"
    # Fetch papers from last N days
    DEFAULT_DAYS = 90

    # Comprehensive stop words list - these are too common to be useful for filtering
    STOP_WORDS: ClassVar[set[str]] = {
        # Articles and prepositions
        "the",
        "a",
        "an",
        "in",
        "on",
        "at",
        "to",
        "for",
        "of",
        "with",
        "by",
        "from",
        "as",
        "into",
        "through",
        "during",
        "before",
        "after",
        "above",
        "below",
        "between",
        "under",
        "about",
        "against",
        "among",
        # Conjunctions
        "and",
        "or",
        "but",
        "nor",
        "so",
        "yet",
        "both",
        "either",
        "neither",
        # Pronouns
        "i",
        "you",
        "he",
        "she",
        "it",
        "we",
        "they",
        "me",
        "him",
        "her",
        "us",
        "them",
        "my",
        "your",
        "his",
        "its",
        "our",
        "their",
        "this",
        "that",
        "these",
        "those",
        "which",
        "who",
        "whom",
        "whose",
        "what",
        "whatever",
        # Question words
        "when",
        "where",
        "why",
        "how",
        # Modal and auxiliary verbs
        "is",
        "are",
        "was",
        "were",
        "be",
        "been",
        "being",
        "am",
        "have",
        "has",
        "had",
        "having",
        "do",
        "does",
        "did",
        "doing",
        "will",
        "would",
        "shall",
        "should",
        "can",
        "could",
        "may",
        "might",
        "must",
        "need",
        "ought",
        # Common verbs
        "get",
        "got",
        "make",
        "made",
        "take",
        "taken",
        "give",
        "given",
        "go",
        "went",
        "gone",
        "come",
        "came",
        "see",
        "saw",
        "seen",
        "know",
        "knew",
        "known",
        "think",
        "thought",
        "find",
        "found",
        "show",
        "shown",
        "showed",
        "use",
        "used",
        "using",
        # Generic scientific terms (too common to filter on)
        # Note: Keep medical terms like treatment, disease, drug - meaningful for queries
        "study",
        "studies",
        "studied",
        "result",
        "results",
        "method",
        "methods",
        "analysis",
        "data",
        "group",
        "groups",
        "research",
        "findings",
        "significant",
        "associated",
        "compared",
        "observed",
        "reported",
        "participants",
        "sample",
        "samples",
        # Other common words
        "also",
        "however",
        "therefore",
        "thus",
        "although",
        "because",
        "since",
        "while",
        "if",
        "then",
        "than",
        "such",
        "same",
        "different",
        "other",
        "another",
        "each",
        "every",
        "all",
        "any",
        "some",
        "no",
        "not",
        "only",
        "just",
        "more",
        "most",
        "less",
        "least",
        "very",
        "much",
        "many",
        "few",
        "new",
        "old",
        "first",
        "last",
        "next",
        "previous",
        "high",
        "low",
        "large",
        "small",
        "long",
        "short",
        "good",
        "well",
        "better",
        "best",
    }

    def __init__(self, server: str = DEFAULT_SERVER, days: int = DEFAULT_DAYS) -> None:
        """
        Initialize bioRxiv tool.

        Args:
            server: "biorxiv" or "medrxiv"
            days: How many days back to search
        """
        self.server = server
        self.days = days

    @property
    def name(self) -> str:
        return "biorxiv"

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=1, max=10),
        reraise=True,
    )
    async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
        """
        Search bioRxiv/medRxiv for preprints matching query.

        Note: bioRxiv API doesn't support keyword search directly.
        We fetch recent papers and filter client-side.

        Args:
            query: Search query (keywords)
            max_results: Maximum results to return

        Returns:
            List of Evidence objects from preprints
        """
        # Build date range for last N days
        end_date = datetime.now().strftime("%Y-%m-%d")
        start_date = (datetime.now() - timedelta(days=self.days)).strftime("%Y-%m-%d")
        interval = f"{start_date}/{end_date}"

        # Fetch recent papers
        url = f"{self.BASE_URL}/{self.server}/{interval}/0/json"

        async with httpx.AsyncClient(timeout=30.0) as client:
            try:
                response = await client.get(url)
                response.raise_for_status()
            except httpx.HTTPStatusError as e:
                raise SearchError(f"bioRxiv search failed: {e}") from e
            except httpx.RequestError as e:
                raise SearchError(f"bioRxiv connection failed: {e}") from e

            data = response.json()
            papers = data.get("collection", [])

            # Filter papers by query keywords
            query_terms = self._extract_terms(query)
            matching = self._filter_by_keywords(papers, query_terms, max_results)

            return [self._paper_to_evidence(paper) for paper in matching]

    def _extract_terms(self, query: str) -> list[str]:
        """Extract meaningful search terms from query."""
        # Simple tokenization, lowercase
        terms = re.findall(r"\b\w+\b", query.lower())
        # Filter out stop words and short terms
        return [t for t in terms if t not in self.STOP_WORDS and len(t) > 2]

    def _filter_by_keywords(
        self, papers: list[dict[str, Any]], terms: list[str], max_results: int
    ) -> list[dict[str, Any]]:
        """Filter papers that contain query terms in title or abstract."""
        scored_papers = []

        # Require at least 2 matching terms, or all terms if fewer than 2
        min_matches = min(2, len(terms)) if terms else 1

        for paper in papers:
            title = paper.get("title", "").lower()
            abstract = paper.get("abstract", "").lower()
            text = f"{title} {abstract}"

            # Count matching terms
            matches = sum(1 for term in terms if term in text)

            # Only include papers meeting minimum match threshold
            if matches >= min_matches:
                scored_papers.append((matches, paper))

        # Sort by match count (descending)
        scored_papers.sort(key=lambda x: x[0], reverse=True)

        return [paper for _, paper in scored_papers[:max_results]]

    def _paper_to_evidence(self, paper: dict[str, Any]) -> Evidence:
        """Convert a preprint paper to Evidence."""
        doi = paper.get("doi", "")
        title = paper.get("title", "Untitled")
        authors_str = paper.get("authors", "Unknown")
        date = paper.get("date", "Unknown")
        abstract = paper.get("abstract", "No abstract available.")
        category = paper.get("category", "")

        # Parse authors (format: "Smith, J; Jones, A")
        authors = [a.strip() for a in authors_str.split(";")][:5]

        # Truncate abstract if needed
        truncated_abstract = abstract[:1800]
        suffix = "..." if len(abstract) > 1800 else ""

        # Note this is a preprint in the content
        content = (
            f"[PREPRINT - Not peer-reviewed] {truncated_abstract}{suffix} Category: {category}."
        )

        return Evidence(
            content=content[:2000],
            citation=Citation(
                source="biorxiv",
                title=title[:500],
                url=f"https://doi.org/{doi}" if doi else "https://www.medrxiv.org/",
                date=date,
                authors=authors,
            ),
            relevance=0.75,  # Slightly lower than peer-reviewed
        )